

Evidenze di Oscillazione del Do alle B-factories

Sommario:

- Formalismo delle oscillazioni
- Il caso del charm
- Le misure
 - Oscillazioni di Sapore
 - * yCP
 - Analisi di Dalitz
- Interpretazioni e conseguenze

Formalismo (1)

- Mesoni neutri: autostati di sapore (M°)
- Evoluzione temporale: interazioni deboli, che inducono oscillazioni e decadimenti

$$i \frac{\partial}{\partial t} \binom{|M^{\,0}(t)\rangle}{|\overline{M}^{\,0}(t)\rangle} = \left(\mathbf{M} - \frac{i}{2} \Gamma \right) \binom{|M^{\,0}(t)\rangle}{|\overline{M}^{\,0}(t)\rangle}$$
2x2 hermitian matrices Mesons decay!

Autostati di massa :

$$|M_{1,2}\rangle = p|M^0\rangle \pm q|\overline{M}^0\rangle$$

ullet ... si propagano con masse($m_{1,2}$) e larghezze ($\Gamma_{1,2}$) definite

$$|M_{1,2}(t)\rangle = e^{-i(m_{1,2}-i\Gamma_{1,2}/2)t}|M_{1,2}(t=0)\rangle$$

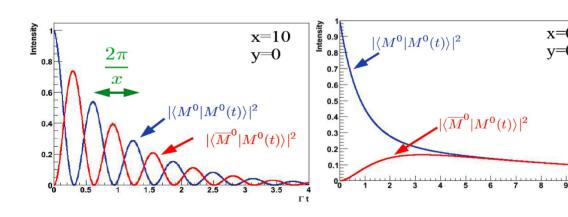
Formalismo (2)

Evoluzione temporale di uno stato prodotto con sapore definito, M°, al tempo t=0:

$$|M^0(t)\rangle = e^{-\bar{\gamma}t/2} \left(\cosh(\Delta \gamma t/2) |M^0\rangle - \frac{q}{p} \sinh(\Delta \gamma t/2) |\overline{M}^0\rangle \right)$$

... dove i termini

$$\Delta \gamma = (y + ix)\Gamma$$

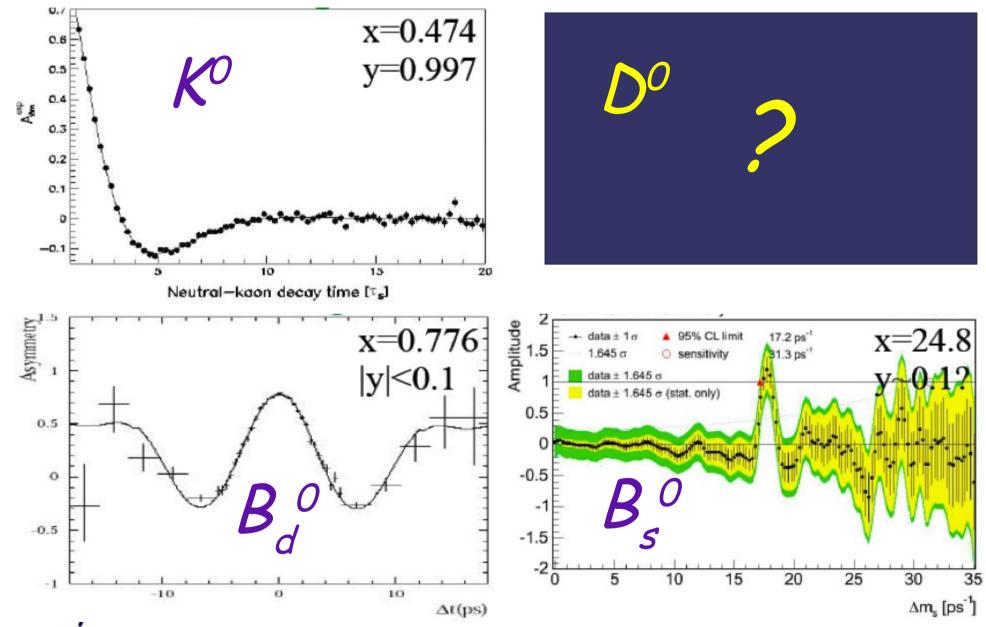

$$\bar{\gamma} = (\Gamma_1 + \Gamma_2)/2 - i(m_1 + m_2)$$

dipendono dagli osservabili:

$$\Gamma = \frac{\Gamma_1 + \Gamma_2}{2} = \frac{1}{\tau}$$

$$x = \frac{\Delta m}{\Gamma}$$

$$y = \frac{\Delta \Gamma}{2\Gamma}$$


Comparsa dello stato di sapore

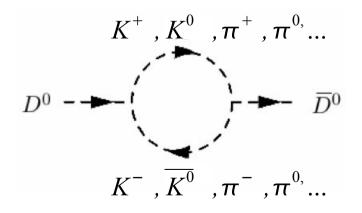
opposto, con frequenza $\omega = 2\pi/x$

TAnello Mancante (pre-Moriond)

)-mixing: teoria

Contributi a "corto-raggio" (quark-like)

b, s, db, s, d


Soppressione Cabibbo

Soppressione GIM

$$H \propto \cos^2 \theta_c \sin^2 \theta_c \frac{(m_s^2 - m_d^2)^2}{m_c^2}$$

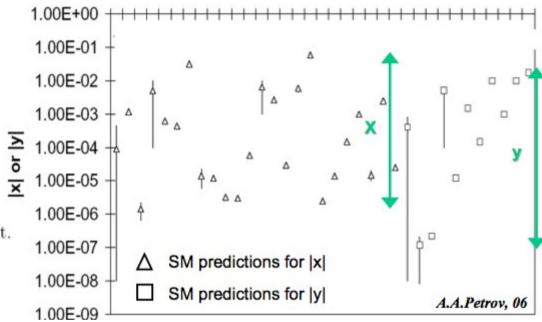
Stati Virtuali: contribuiscono solo a x

Contributi a "lungo-raggio" (hadron-like)

Stati Reali (Comuni): contribuiscono a x e y

$$\sum_{i} \Gamma_{i}(comuni) \ll \Gamma(tot)$$

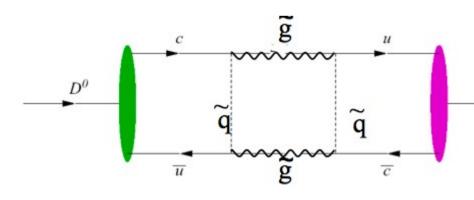
Soppressione di fatto

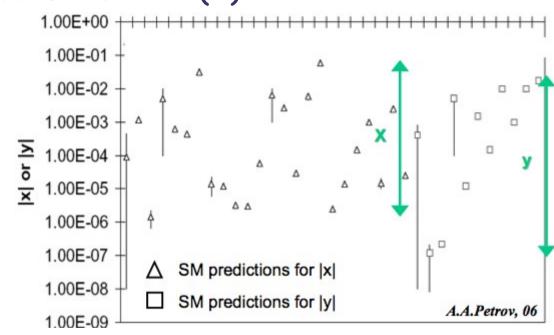

D-mixing: Predizioni?

- \bullet SU(3) esatto : x = y = 0
- Difficile il calcolo delle correzioni a SU(3)
- Effetti maggiori su y?

$$x < 10^{-3}$$
, $y < 10^{-2}$

G. Burdman and I. Shipsey, Ann. Rev. Nucl. and Part. Sci. 53, 431 (2003).




D-mixing: Predizioni?

- SU(3) esatto : x = y = 0
- Difficile il calcolo delle correzioni a SU(3)
- Effetti maggiori su y?

Nuova Fisica:

Stati Virtuali: correzioni a x, ma difficili da quantificare

Risultati Sperimentali

Molti esperimenti in passato hanno studiato il fenomeno

Nessuna evidenza

Prime evidenze da B-factories: Moriond 2007

alta sezione d'urto

$$\sigma(e^+e^-) \rightarrow c\bar{c} = 1.3 \ nb \ @ \sqrt{s} \simeq 10.5 \ GeV$$

alta luminosita

$$BABAR: \int L dt \simeq 380 \text{ fb}^{-1}, \Rightarrow 5 \times 10^8 (D \bar{D})$$

Belle:
$$\int L dt \simeq 540 \, fb^{-1}$$
, $\Rightarrow 7 \times 10^8 (D \, \overline{D})$

• boost "naturale" $\beta \gamma c \tau \simeq 100 \mu m$

$$\beta \gamma c \tau \simeq 100 \mu m$$

<u>Je Evidenze Sperimentali</u>

Oscillazione di Sapore

BABAR

Belle

Autostati di Massa

- BABAR
- Belle

Analisi di Dalitz

- BABAR
- Belle

$D^0 \Leftrightarrow \overline{D^0}$

hep-ex/0703020

PRL 96 151801 (2006)

$$D^0/\overline{D^0}\! o\! K^{^+}\ K^{^-}$$
 , $\pi^{^+}$ $\pi^{^-}$

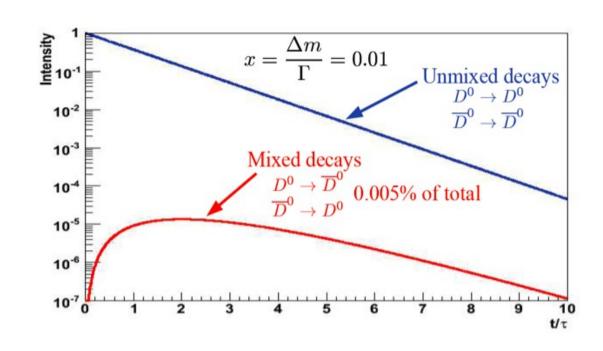
PRL 91 121801 (2003)

hep-ex/0703036

PRL 97 221803 (2006)

$$D^0/\overline{D^0} \rightarrow K^- \pi^+ \pi^0 , K3\pi$$

$$D^0/\overline{D^0} \rightarrow K_s \pi^+ \pi^-$$

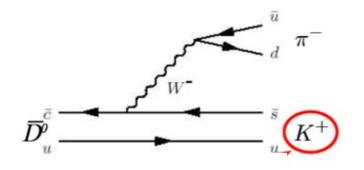

Oscillazioni $D^0 \Leftrightarrow D^0$

- Identifica sapore (D/anti-D) in produzione ($t_o = 0$)
- Identifica sapore (D/anti-D) al decadimento (t)
- Determina x,y dalla frazione (time-dependent) di eventi oscillati:

$$r(t) = \frac{N(D^{0}(0) \to \overline{D^{0}}(t))}{N(D^{0}(0))}$$

(e complesso coniugato)

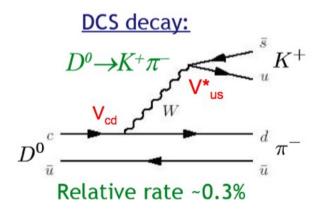
Identificazione di Sapore

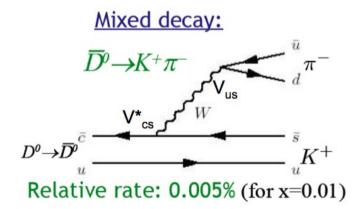


• Produzione: D^o dal decadimento $D^{*+} \rightarrow \pi^+ D^0$ (e c.c.)

Decadimento:

$$D^0 \rightarrow K^- \pi^+ (e \ c.c.)$$


la carica del K identifica il sapore del D⁰



Complicazioni: DCS

Decadimenti Doppio Cabibbo Soppressi: falso segnale di oscillazione

- Rate confrontabile col segnale
- Nessuna struttura temporale

DCS

- Interferiscono col segnale
- Introducono una fase forte (ignota)

$$\frac{A_{DCS}}{A_{CE}} = -\sqrt{R_D}e^{-i\delta}$$

$$\frac{A_{DCS}}{A_{CF}} = -\sqrt{R_D}e^{-i\delta} \qquad \begin{cases} x' = x\cos\delta + y\sin\delta \\ y' = -x\sin\delta + y\cos\delta \end{cases}$$

misuriamo dei parametri efficaci !

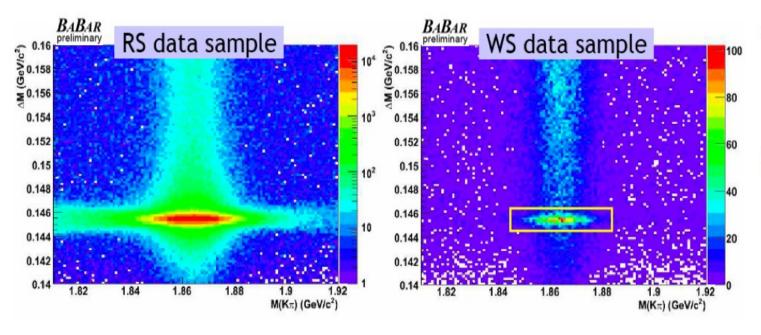
Tevoluzione temporale

Includendo gli effetti di interferenza e sviluppando per i piccoli valori di x',y':

$$r(t) = \overline{r}(t) \simeq e^{-\Gamma t} (R_D + \sqrt{R_D} y' \Gamma t + \frac{(x'^2 + y'^2)}{4} \Gamma^2 t^2 + \dots)$$
DCS
$$\frac{1 \text{ Interferenza}}{4} \Gamma (x'^2 + y'^2) \Gamma^2 t^2 + \dots$$

$$R_{D} = \frac{\Gamma(DCS)}{\Gamma(CF)}$$

$$x' = x \cos \delta + y \sin \delta$$


$$y' = -x \sin \delta + y \cos \delta$$

$$x'^{2} + y'^{2} = x^{2} + y^{2}$$

<u> La Misura di BABAR</u>

D^{ϱ} selection:

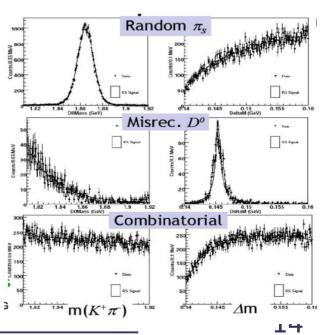
- \clubsuit Identified K and π
- ❖ p*(D⁰)> 2.5 GeV/c
- * 1.81< $m(K\pi)$ <1.92 GeV/ c^2

Slow π selection:

- ❖ $p*(π_s)$ < 0.45 GeV/c
- $p_{lab}(\pi_s) > 0.1 \text{ GeV/c}$
- \bullet 0.14< Δ m<0.16 GeV/c² Δ m=m($K\pi\pi_s$)-m($K\pi$)

Fondi caratterizzati nei dati:

Misreconstructed D^0 :

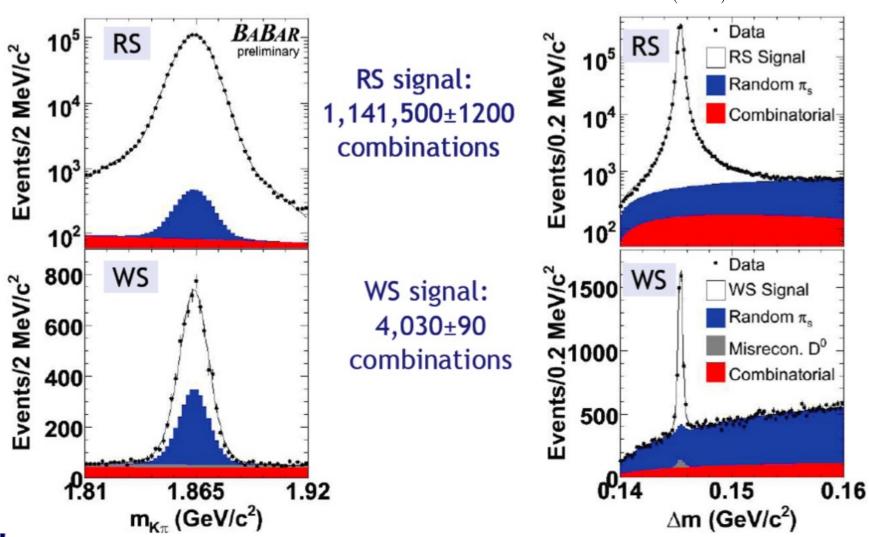

- **Partially reco.** D^{θ} , $D^{\theta} \rightarrow K^{-}\mu^{+}\nu$
- ❖ Double misid $D^{o} \rightarrow K^{-}\pi^{+}$ (WS events only)
- Peaks in Δm , not $m(K\pi)$

Random π_s :

- **\Leftrightarrow Correct** D^{θ} , wrong π_s
- Peaks in $m(K\pi)$, not Δm

Combinatoric:

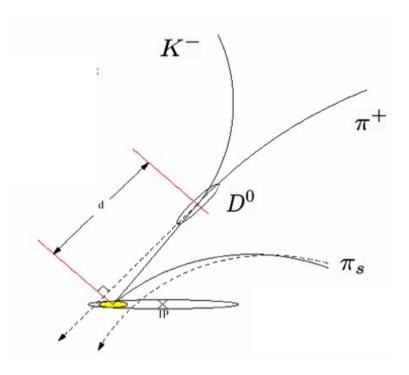
Random tracks


Estrazione del Segnale ...

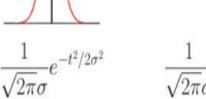
• ... da fit simultaneo $M(K\pi)$, ΔM (incluse correlazioni)

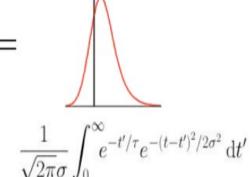
 $0.1445 < \Delta M < 0.1485 \ GeV$

 $1.843 < M(K\pi) < 1.883 \ GeV$




Misura di t

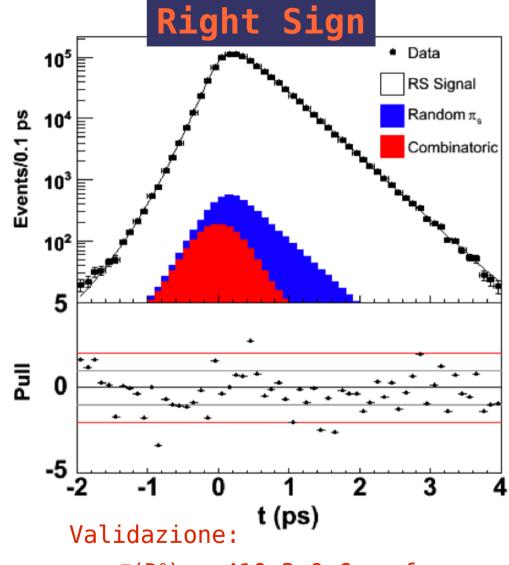


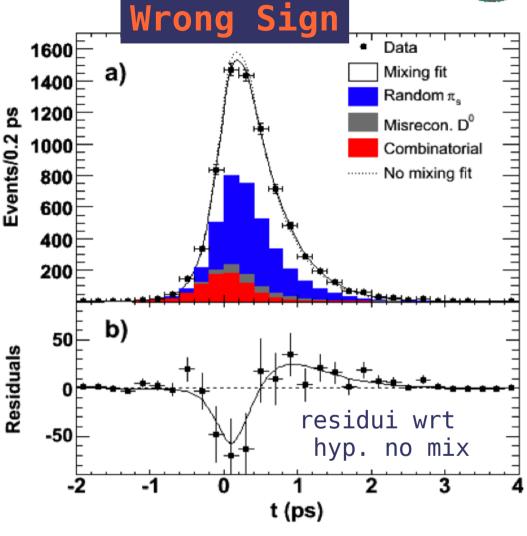

- \bullet D°, π_s costretti al beam-spot
- Π(fit) >0.1 %
- -2<t< 4 ps
- $\sigma(t) < 0.5 ps$

R.S.:

Risoluzione, τ

W.S.: R_{n}, x', y'


hyp:

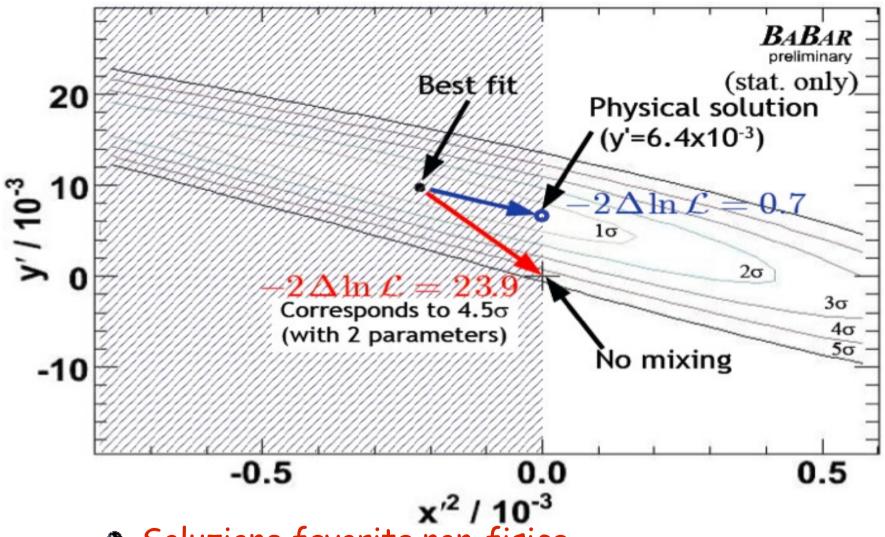

R.S., W.S. hanno la stessa funzione di risoluzione

Risultati

$$\tau(D^0) = 410.3 \pm 0.6_{(stat)} fs$$

$$\tau(D^{\circ}) = 410.1 \pm 1.1 \text{ fs (PDG)}$$

$$R_D = (3.03\pm0.16\pm0.10) 10^{-3}$$


$$x^{-2} = (-0.22 \pm 0.30 \pm 0.21) \ 10^{-3}$$

$$y' = (9.7 \pm 4.4 \pm 3.1) 10^{-3}$$

Evidenza dell' Oscillazione

Includendo le sistematiche l'evidenza e' di 3.9 σ

Errori Sistematici

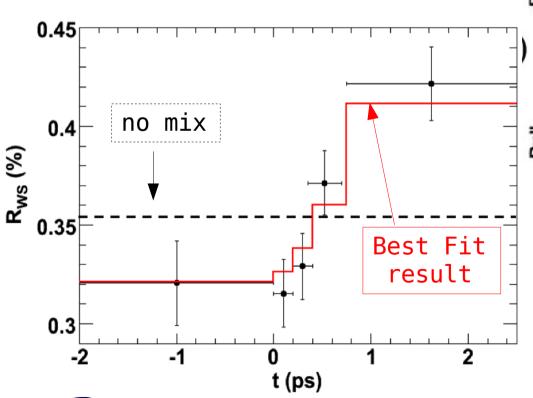
Fit e modello:

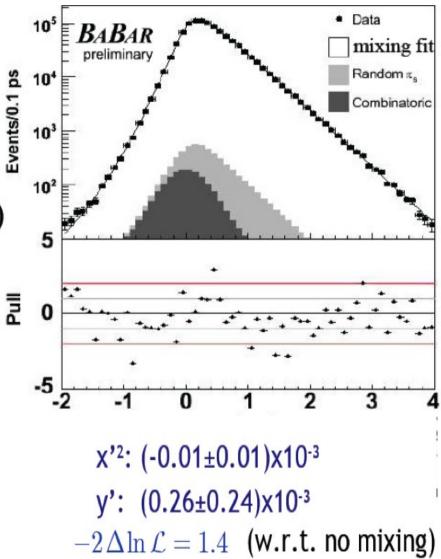
- Funzione di risoluzione
- PDF e frazioni di segnale e fondi

Selezione

Sensibilita' ai tagli

Par	Fit	Tagli	Totale
$R_{\scriptscriptstyle D}$	0.59	0.24	0.63
X12	0.40	0.57	0.70
y'	0.45	0.55	0.71

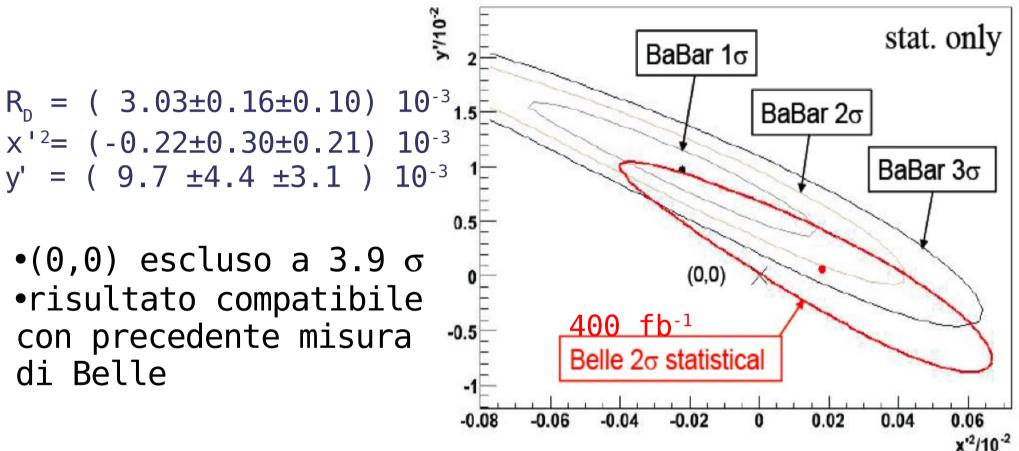

Errore sistematico espresso come frazione dell'errore statistico



()alidazioni ...

- Fit mixing nel campione
 Right Sign

- Misura r = WS/RS in cinque bin di t, da fit a ΔM , $M(K\pi)$
- Nessuna ipotesi sulla dipendenza temporale di segnale e fondi

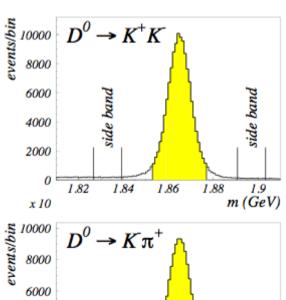


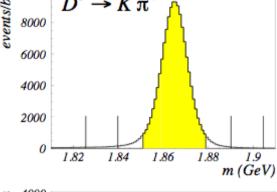
Conclusioni (parziali)

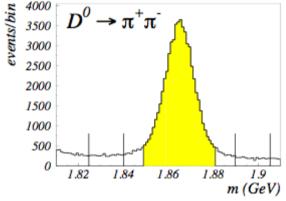
Y_{CP} da Autostati di Massa

- $\Gamma = \frac{1}{2} (\Gamma_1 + \Gamma_2) = (410 \text{ fs})^{-1} \text{ e'}$ un parametro efficace
- Se <u>CP conservata</u>, $|D_{1,2}\rangle \equiv |D_{CP+,-}\rangle$
- ullet Evoluzione temporale autostati CP +, CP- regolata da $\Gamma_{\!\scriptscriptstyle 1}$ e $\Gamma_{\!\scriptscriptstyle 2}$
- Si misura

$$y_{CP} = \frac{\Gamma(K^{+} K^{-})}{\Gamma(K^{-} \pi^{+})} - 1 = \frac{\Gamma(\pi^{+} \pi^{-})}{\Gamma(K^{-} \pi^{+})} - 1 = \frac{\Delta \Gamma}{\Gamma}$$

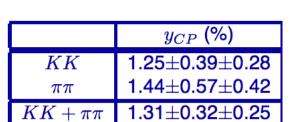

Y_{CP} Belle, Moriond

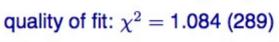


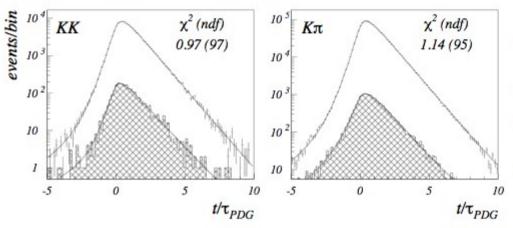

Selezione eventi, controllo dei fondi, misura tempo proprio simili a misura precedente

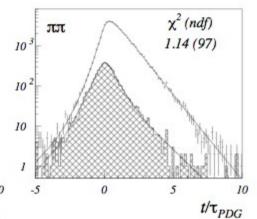
540 fb⁻¹:

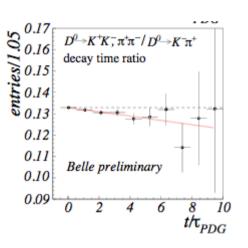
channel	KK	$K\pi$	$\pi\pi$
signal	110K	1.2M	50K
purity	98%	99%	92%




Y_{CP} Belle, Moriond




 $\tau(K\pi) = 408.7 \pm 0.6$ fs



Simultaneous $KK/\pi\pi/K\pi$ binned likelihood fit

source	y_{CP}	A_{Γ}
acceptance	0.12%	0.07%
equal t_0 assumption	0.14%	0.08%
mass window position	0.04%	0.003%
difference btw. background and side bands	0.09%	0.06%
difference btw. final states in opening angle	0.02%	
background parameterization	0.07%	0.07%
resolution function	0.01%	0.01%
analysis cuts	0.11%	0.05%
binning	0.01%	0.01%
total	0.25%	0.15%

$$y_{CP} = (1.31\pm0.32\pm0.25) %$$
4.1 σ stat
>3 σ stat+syst.

Separare X, Y: Analisi di Dalitz $D^0/\overline{D^0} \to K_s \pi^0 \pi^0$

Dalitz Plot:

- ullet Cabibbo Favoriti : $D^0 {
 ightarrow} K^{*-} \pi^+$, ...
- ullet Cabibbo Sopressi: $D^0 \! o \! K^{*+} \pi^{-}$, ...
- Autostati di CP (Massa) $D^0 \rightarrow K_S \rho^0$

Analisi evoluzione temporale sul Dalitz Plot misura simultaneamente

- Ampiezze CF, CS
- Fasi forti
- Parametri di Mixing

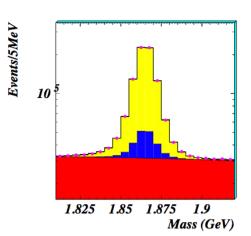
Il Metodo

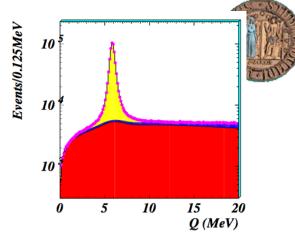
Ampiezza time-dependent sul Dalitz Plot (CP conservata):

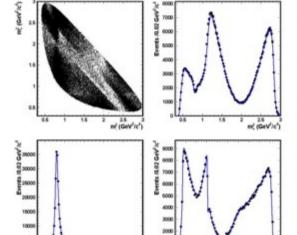
$$M(m_{-}^{2}, m_{+}^{2}, t) = A(m_{-}^{2}, m_{+}^{2}) \frac{e_{1}(t) + e_{2}(t)}{2} + A(m_{+}^{2}, m_{-}^{2}) \frac{e_{1}(t) - e_{2}(t)}{2}$$

m, e' definita col tag di D*:

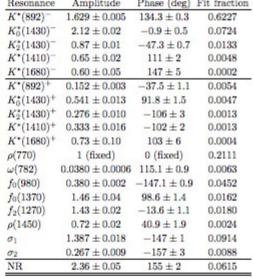
$$m_{\pm} = \left\{ egin{array}{ll} m(K_s, \pi^{\pm}) & D^{*+}
ightarrow D^0 \pi^+ \ m(K_s, \pi^{\mp}) & D^{*-}
ightarrow ar{D}^0 \pi^- \end{array}
ight.$$

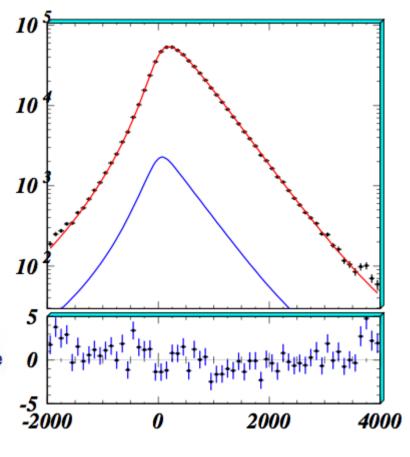

 $e_{1,2}(t)$ contengono la dipendenza da x,y:


$$e_{1,2}(t) = e^{-i(m_{1,2} - i\Gamma_{1,2}/2)t}$$


Belle Moriond 2007

- 534000 eventi
- Purezza ~ 95 %



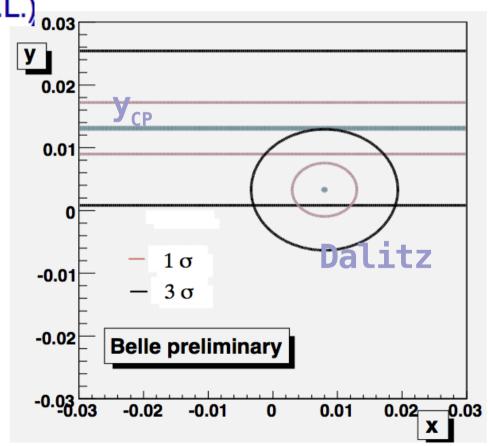

Dalitz fit

Resonance	Amplitude	Phase (deg)	Fit fraction
$K^*(892)^-$	1.629 ± 0.005	134.3 ± 0.3	0.6227
$K_0^*(1430)^-$	2.12 ± 0.02	-0.9 ± 0.5	0.0724
$K_2^*(1430)^-$	0.87 ± 0.01	-47.3 ± 0.7	0.0133
$K^*(1410)^-$	0.65 ± 0.02	111 ± 2	0.0048
$K^*(1680)^-$	0.60 ± 0.05	147 ± 5	0.0002
$K^*(892)^+$	0.152 ± 0.003	-37.5 ± 1.1	0.0054
$K_0^*(1430)^+$	0.541 ± 0.013	91.8 ± 1.5	0.0047
$K_2^*(1430)^+$	0.276 ± 0.010	-106 ± 3	0.0013
$K^*(1410)^+$	0.333 ± 0.016	-102 ± 2	0.0013
$K^*(1680)^+$	0.73 ± 0.10	103 ± 6	0.0004
$\rho(770)$	1 (fixed)	0 (fixed)	0.2111
$\omega(782)$	0.0380 ± 0.0006	115.1 ± 0.9	0.0063
$f_0(980)$	0.380 ± 0.002	-147.1 ± 0.9	0.0452
$f_0(1370)$	1.46 ± 0.04	98.6 ± 1.4	0.0162
$f_2(1270)$	1.43 ± 0.02	-13.6 ± 1.1	0.0180
$\rho(1450)$	0.72 ± 0.02	40.9 ± 1.9	0.0024
σ_1	1.387 ± 0.018	-147 ± 1	0.0914
σ_2	0.267 ± 0.009	-157 ± 3	0.0088
NR	2.36 ± 0.05	155 ± 2	0.0615

- ◆ Dalitz model: 13 different (BW) resonances and a non-resonant contribution
- ◆ Results with this refined model consistent with the analysis performed for the Belle ϕ_3 measurement, PRD73, 112009 (2006)
- lacktriangle To test the scalar $\pi\pi$ contributions, K-matrix formalism is also used

Risultati

$$x = 0.80 \pm 0.29 \pm 0.17$$
 %


$$y = 0.33 \pm 0.24 \pm 0.15$$
 %

σ syst :
 Modello Dalitz (x),
 Modello e PDF(t) (y)

(x=0,y=0) point:

 $-2\Delta \ln L =$ 7.3 (2.6% C.L.) $_{ extbf{0.03}}$

- x, y non correlati
- x > y
- y consistente ~2 σ con y_{CP}

P conservata?

$$|M^0(t)\rangle = e^{-ar{\gamma}t/2} \left(\cosh(\Delta\gamma t/2) |M^0\rangle - rac{q}{p} \sinh(\Delta\gamma t/2) |\overline{M}^0
angle
ight)$$

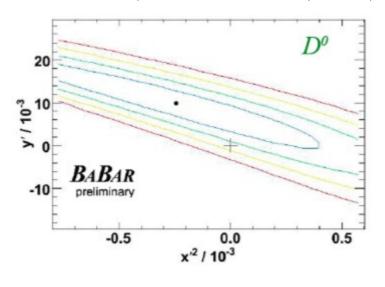
CP violata:

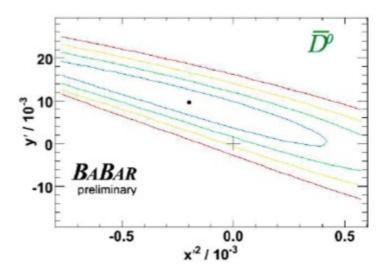
• funzione d'onda

- $\Delta = \frac{|q^2| |p^2|}{|q^2| + |p^2|} \neq 0$
- * nel decadimento $A_f = A(D^0 \to f) \neq A(\overline{D^0} \to \overline{f}) = \overline{A_{\overline{f}}}$ Conseguenze
 - diversi parametri per eventi con tag D*+, D*-
 - autostati massa ≠ autostati CP:

$$y_{CP} = y \cos \phi + x \Delta \sin \phi \neq y$$

$$\phi = Arg(\frac{q A_{f_{CP}}}{p A_{f_{CP}}}) \quad (\simeq 2A^2 \sin^4 \theta_C \eta < 10^{-3} \text{ nel } M.S.)$$


()erifiche



Misure separate per D*+ / D*- :

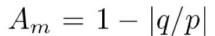
$$X'^{+2}$$
: $(-0.24\pm0.43\pm0.30)$ $x10^{-3}$ X'^{-2} : $(-0.20\pm0.41\pm0.29)$ $x10^{-3}$

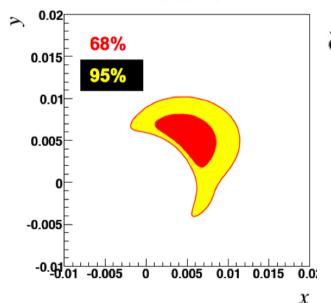
$$A_{CP} = \frac{\Gamma(D^0 \to KK/\pi\pi) - \Gamma(\overline{D^0} \to KK/\pi\pi)}{\Gamma(D^0 \to KK/\pi\pi) + \Gamma(\overline{D^0} \to KK/\pi\pi)} = (.01 \pm .30 \pm .15) \%$$

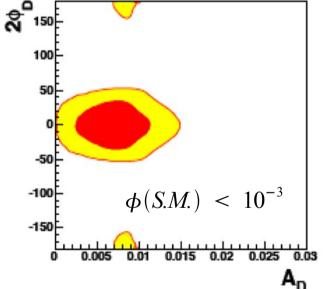
NESSUNA EVIDENZA DI CP

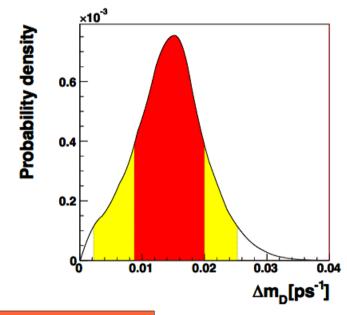
Interpretazioni

Analisi (Bayesiana) che include tutte le misure


$$y_{\pm}^{\prime \downarrow} = (1 \pm A_m)(y'\cos 2\phi_D \mp x'\sin 2\phi_D),$$


$$x_{\pm}^{\prime 2} = (1 \pm 2A_m)(x'\cos 2\phi_D \pm y'\sin 2\phi_D)^2,$$


$$y_{\text{CP}} = y\cos 2\phi_D - A_m x\sin 2\phi_D,$$


$$A_{\Gamma} = A_m y\cos 2\phi_D - x\sin 2\phi_D,$$

Parameter	68% prob.	95% prob.
\boldsymbol{x}	$(5.5 \pm 2.2) \cdot 10^{-3}$	[0.0005, 0.0102]
\boldsymbol{y}	$(5.4 \pm 2.0) \cdot 10^{-3}$	[0.0010, 0.0091]
$2\phi_D$	$(0 \pm 22)^{\circ}$	$[-50^\circ, 50^\circ]$
δ	$(-38 \pm 46)^{\circ}$	$[-130^\circ,36^\circ]$
A_m	-0.02 ± 0.15	[-0.33, 0.29]
$\Delta m_D [\mathrm{ps}^{-1}]$	$(14.5 \pm 5.6) \cdot 10^{-3}$	[0.0027, 0.0256]

Ciuchini et al.

hep-ph/0703294

 $\Delta m_D = (14.5 \pm 5.6) \times 10^{-3} ps^{-1}$

31

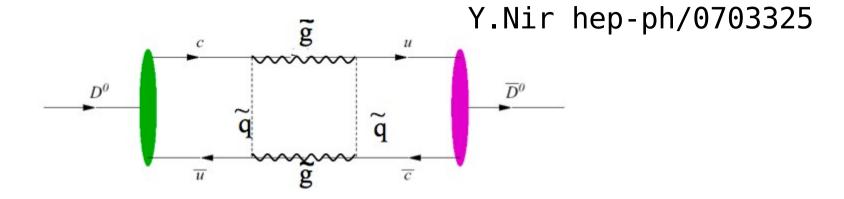
Vincoli su Nuova Fisica ?

- S.M. poco predittivo
- Tuttavia si possono estrarre delle conclusioni (generali) su N.F.
- V.Porretti (Meeting BABAR Italia):

In molti scenari sono attesi notevoli segnali di D-Mixing

FCNC for D > FCNC for K

In words: in order to satisfy the bounds on the down sector, FCNC induced by the CKM must be shifted in the up sector.


This is a general reasoning that applies also to other models that predict large signals in D mixing (variants of technicolor and 2HDM models, some scenarios in extraD, littlest higgs models...)

Un esempio

D-Mixing & SUSY

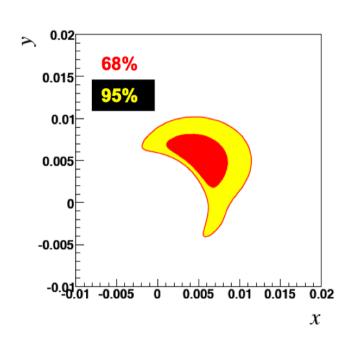
Questi diagrammi introducono sensibilita' a squarks e gluini

The measurements constrain squark and gluino masses > 2 TeV

• ... brutte nuove per LHC

(MSSM con allineamento quark-squark)

Ciuchini et al. hep-ph/0703294


Conclusioni



Prime evidenze da BABAR e Belle di mixing del charm

$$x^2 + y^2 > 0$$

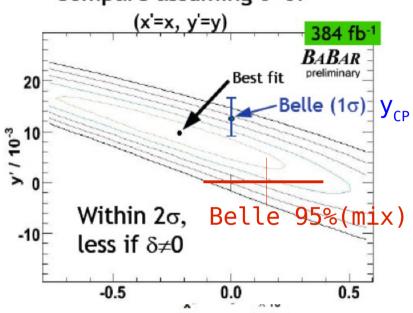
no CP?

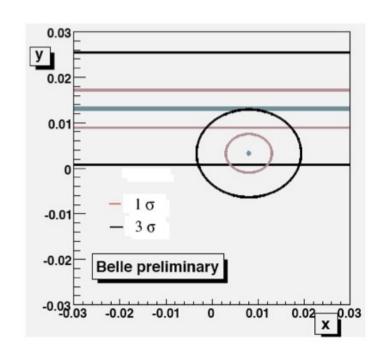
Misure attuali vincolano alcuni modelli di NF

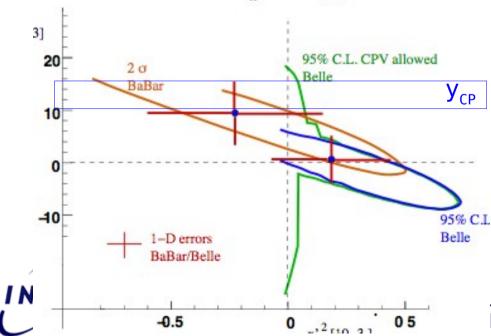
no squark-gluini @LHC (R-conserved SUSY with alignment)

Estate: nuovi risultati da B-factories

• Dalitz (K3 π ,K_s $\pi\pi$,K⁻ π ⁺ π ⁰), y_{CP} (BABAR)


Miscellanea



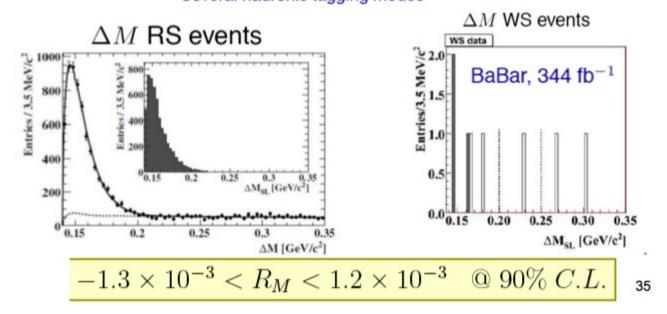

Problemi di Consistenza?

Compare assuming δ =0:

FN & Universita' di Padova

Il canale semileptonico

Manca un neutrino! (fondi abbondano nel wrong-charge)



D-mixing with Semileptonic decay

$$D^0 \rightarrow K^- I^+ \nu_I$$

No DCS sl. !
$$A_f = \bar{A}_{\bar{f}} = 0$$
 $r(t) = \frac{e^{-t}}{4}(x^2 + y^2) t^2 \left| \frac{q}{p} \right|^2$

Double tag $D^{*+} \to D^0 \pi^+$, semil. and hadronic (fully rec.) Several hadronic tagging modes

Nuova Fisica?

Da Ciuchini et al ., citato:

$m_{ ilde{q}}$	$m_{\widetilde{g}}$	$\left \left(\delta^u_{12} ight)_{LL,RR} ight $	$\left (\delta^u_{12})_{LR,RL} ight $	$\left (\delta^u_{12})_{LL=RR} ight $
350	350	0.032	0.0056	0.0027
500	500	0.048	0.0080	0.0040
1000	1000	0.11	0.019	0.0080
500	1000	0.13	0.014	0.0060
500	350	0.028	0.0080	0.0036

TABLE III: Upper bounds at 95% probability for $|(\delta_{12}^u)_{AB}|$ for various values of squark and gluino masses (in GeV).

It is very interesting that SUSY models with quark-squark alignment generically predict $(\delta_{12}^u)_{LL} \sim 0.2$ [6]. We conclude that, to be phenomenologically viable, they need squark and gluino masses to be above ~ 2 TeV. Therefore, they probably lie beyond the reach of the LHC.

