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The FREQUENTIST example, by J.J.Gomes.Cadenas

http://www.pit.physik.uni-tuebingen.de/grabmayr/workshop/talks/gomez-statistics.pdf
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Observation

1.74 < µ < 8.0 at 90% C.L.

Ambiguity in the interval definition: < or ≤ ?
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The famous FELDMAN & COUSINS technique (for a Physicist):
G. J. Feldman and R. D. Cousins, “Unified approach to the classical statistical analysis of small signals,”
Phys. Rev. D 57, 3873 (1998) http://prola.aps. org/pdf/PRD/v57/i7/p3873 1.
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=0; µ=n-b
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max probability
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NOTE: P0 is a DENSITY, P is a PROBABILITy  
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PROBLEMS with Feldman & Cousins

- For small n and n<b the UPPER LIMIT depends on b  !
(it happens that better limits are obtained for larger values of b)

- When dealing with more than 1 parameter
- Uncertainties on the estimation of background
- Coverage

BAYES

1 observation for µ≥1 gaussian with s=1
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We can use the Bayes Theorem
(better solution, but assuming a uniform Prior …)

Instead of computing b, classically, as:
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p(ns) = costant for ns≥ 0
= 0 for ns< 0

In
te

gr
at

io
n 

ov
er

 n
sup

Integrating for parts nobs times
b is obtained as:

(otherwise, one can 
integrate via Monte Carlo)

(Cowan, section 9.9)
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Carefulness

Sensitivity of an experiment: 
either the averaged expected central value from an ensemble of experiment
or averaged expected upper limit from an ensemble of experiment with expected
background and no true signal.

What to do if the expected C.V. or U.L. are rather distant from the expectation ?

Critical question when the observed background is less than what expected

Answer: report both, e.g. U.L. from data and U.L. from sensititvity !



L. Stanco, Stat.An.Dati, Dottorato 2022/23 - Padova 20

|

υµ = υ2 cosθ + υ4 sinθ

υs = υ4 cosθ − υ2 sinθ

Simple toy model, mixing of two neutrino flavor states:

P υµ →υs( ) = sin2(2θ )sin2 1.27Δm
2L(km)

E(GeV )
#

$
%

&

'
(

excluded
region

(from Feldman and R. D. Cousins, Phys. Rev. D 57, 3873) 
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Statistical vs. systematic errors 
Statistical errors:  

How much would the result fluctuate upon repetition  of the 
measurement?

Implies some set of assumptions to define the probability of 
outcome of the measurement.
Systematic errors:

What is the uncertainty in my result due to 
uncertainty in my assumptions, e.g.,

model (theoretical) uncertainty;
modeling of measurement apparatus.

The sources of error do not vary upon repetition of the 
measurement.  Often result from uncertain
value of, e.g., calibration constants, efficiencies, etc.

(we are not talking here of systematical, fixed “errors” that shift the expectation)  
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Include sytematic errors in the STATISTICAL INFERENCE 

Integration is equivalent to
- simulate an adequate large number of pseudo-experiments and 
- extract from the obtained distributions the interesting statistical 

parameters (e.g. Higgs mass)
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Neutrino mass ordering for IH case in NOvA experiment (2016)

Signal: 2.24±0.29
Background: 0.94±0.09
Observation: 6 events

µ = 2.24+0.94=3.18

p− value = Poi xi µ = 3.18( )
i=6

∞

∑ =10.3%
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More sophisticated way: make convolution of Poisson with Gaussian’s 

PDF(x) =

Poi∫ x µS +µB( )
⊗Gau µS µ̂S,σ̂ S( )
⊗Gau µB µ̂B,σ̂ B( )
dµSdµB
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Practically, the convolution can be made in the following way:

PDF(x) =
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…
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…
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p− value = PDF xi !̂µS +
!̂µB( )

i=6

∞

∑ =10.6%

Convoluted Poisson for IH
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Systematic errors and nuisance 
parameters

Response of measurement apparatus is never modelled perfectly:

x (true value)

y
(m

ea
su

re
d 

va
lu

e)

model:  

truth:

Model can be made to approximate better the truth by including
more free parameters.

systematic uncertainty ↔ nuisance parameters
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Nuisance parameters 
Suppose the outcome of the experiment is some set of data values x
(here shorthand for e.g. x1, ..., xn).
We want to determine a parameter q,
(could be a vector of parameters q1, ..., q n).
The probability law for the data x depends on q :

L(x| q)          (the likelihood function)
E.g. maximize L to find estimator
Now suppose, however, that the vector of parameters: 

contains some that are of interest, 
and others that are not of interest:
Symbolically:  

The                          are called nuisance parameters.  
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Digression: marginalization with MCMC
Bayesian computations involve integrals like

often high dimensionality and impossible in closed form,
also impossible with ‘normal’ acceptance-rejection Monte Carlo.
Markov Chain Monte Carlo (MCMC) has revolutionized Bayesian computation.  
Google for ‘MCMC’, ‘Metropolis’, ‘Bayesian computation’, ...

MCMC generates correlated sequence of random numbers:
cannot use for many applications, e.g., detector MC;
effective stat. error greater than √n .

Basic idea:  sample multidimensional 
look, e.g., only at distribution of parameters of interest. 
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MARKOV CHAIN MONTE CARLO: MCMC
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A famous Markov chain is the so-called "drunkard's walk", a random walk on a 
number line, where, at each step, the position may change by +1 or −1 with equal 
probability. From any position there are two possible transitions, to the next or 
previous integer.  The transition probabilities depend only on the current position, 
not on the manner in which the position was reached. For example, the transition 
probabilities from 5 to 4 and 5 to 6 are both 0.5, and all other transition probabilities 
from 5 are 0. 
These probabilities are independent of whether the system was previously in 4 or 6.
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In alternative to the full integral approach one may use the 
NEXT STEP after the “Unified Approach”: profile likelihood function 

(from 2013 G. Cowan et al, arXiv:1007.1727v3)
Example for testing New Physics in Particle Physics

Let consider x random variables, and two set of parameters, µ and q.
Only µ are interesting parameters, while q are e.g. nuisances. 
If it not possible to marginalize on q, then the MAX LIKELIHHOD is given by:

(µ̂,θ̂ ) = argmaxµ,θ L(µ,θ ) where L(µ,θ ) = log f (x;µ,θ )∑

However, it may be quite difficult to perform the full integration. Then, let assume
that µ is known (and independent of q) and write: L(µ,θ ) = Lµ (θ )
For each µ we therefore evaluate:
θ̂µ = argmaxθ Lµ (θ ) and µ̂ = argmaxµ Lµ (θ̂ ) = argmaxµ L(µ,θ̂ )

Tautology, but we have profiled out the q parameters L(µ,θ̂ ) = log f (x;µ,θ̂ )∑

Further proceed with computation of C.I. for µ
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One possibility for searching of new signals:
H0 = known process (background)
H1= background + sought signal

One possibility for setting limit on new signals:
H0 = signal + background
H1= background

In either case compute the p-value (of H0), i.e. probability of finding data of equal
or greater incompatibility with the prediction of H0.
Hypothesis H0 is excluded if p-value < predefined-threshold (C.L.)
Convert p-value into a significance Z=F-1(1-p), where F is the Gaussian Cum.Function.

Quantify the (median) sensitivity on H1 expected from an experiment by computing Z
(formally this is NOT the probability for H1 !)

p-value: error type I

power: 1 - error type II
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Work out an histogram 
!n = n1,…,nN( ) with expectation E ni( ) = µ ⋅ si + bi and

si = sTOT fs x;
!
θs( )bini∫ dx, bi = bTOT fb x;

!
θb( )bini∫ dx

µ be the strength of the signal process (sorry for the confusion about µ !)
µ=0 corresponds to background only, while µ=1 is the nominal signal hypothesis,
i.e. sTOT is given by the nominal signal model,
bTOT is computed aside from data without signal, 

The likelihood function is L µ,
!
θ( ) =

µ ⋅ sj + bj( )
nj

nj !
e− µ⋅sj+bj( )

j=1

N

∏ uk
mj

mj !
e−uk

k=1

M

∏

!m = m1,…,mM( ), E mi( ) = ui
!
θ( )

The test function is the profile likelihood ratio:
λ(µ) =

L µ,
!̂̂
θ

!

"
#

$

%
&

L µ̂,
!̂
θ( )
, !̂̂θ maximizes L for 

a specific µ

And for the test-statistic takes t = −2 lnλ(µ) since 0≤l≤1

Then pµ = f tµ µ( )tµ ,obs

∞

∫ dtµ for a specific µ
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For the case of a single parameter, Wilks(1938) and Wald (1943) showed that:

−2 lnλ(µ) =
µ − µ̂( )2

σ 2 +Ο 1
N

#
$
%

&
'
(

where N is the size of the data sample,
follows a Gaussian with s standard dev.µ̂

t follows a c2 distribution as far as µ is approaching the true value

DISCOVERY

Test µ=0 against the observed µ̂ > 0 i.e. compute the statistic

q0 =
−2 lnλ(0)

0

"
#
$

%$

for µ̂ ≥ 0
for µ̂ < 0

From Wald approximation the cumulative distribution of q0 is F q0 µ( ) =Φ q0( )
Z0 =Φ

−1 1− p0( ) = q0And therefore

Some time, we see also Z0 =Φ
−1 1− p0( ) = χ 2

with f q0 µ = 0( ) = p.d. f . χ12( )
for Wilks-Wald
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SET UPPER LIMIT

Test U.L. on µ against the observed µ̂ i.e. compute the statistic

qµ =
−2 lnλ(µ)

0

"
#
$

%$

for µ̂ ≤ µ
for µ̂ > µ

From Wald approximation the cumulative distribution of q0 is F qµ µ( ) =Φ qµ( )
Zµ =Φ

−1 1− pµ( ) = qµAnd therefore

Sometime we see also Zµ =Φ
−1 1− pµ( ) = χ 2

Note: try to use Monte Carlo simulation as much as possible, 
and surely for looking at the q0 or qµ distributions !

with f qµ µ > 0( ) ≈ p.d. f . χ12( )
for Wilks-Wald (non-central c2)


