Theory of Fundamental Interactions Exercises III

Esercizio 1

Study the W boson decay by addressing the following points:

1. Compute the differential decay width to positron and neutrino

$$
W^{+} \rightarrow e^{+} v_{e},
$$

of a W^{+}at rest with spin $+1,-1$ e 0 along the z axis. Neglect the positron and electron masses. Verify explicitly that the result violates the parity symmetry P.
Compute the polarised differential rates also for the process

$$
W^{-} \rightarrow e^{-} \bar{v}_{e},
$$

and check that Charge Conjugation C is also broken, while $C P$ is preserved.
2. Compute now the unpolarised widths, defined as the average of the polarised ones, by employing the completeness relation for the W polarisation vectors. Check that the same result is obtained as the average of the polarised widths computed at point 1).
3. The main decay channels of the W are:

$$
W \rightarrow e v_{e}, \mu v_{\mu}, \tau v_{\tau}, u d, c s,
$$

compute the total decay width, neglecting the masses of all final states and check that it approximately reproduces the experimental value

$$
\Gamma_{W} \simeq 2 \mathrm{GeV},
$$

