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Since the Hamiltonian density has the physical meaning of an energy density
it could have been computed alternatively, in the Lagrangian formalism, in terms
of the canonical energy-momentum tensor associated with the Lagrangian density
(10.12). Indeed, from the definition (8.169), and taking into account that we have
two independent fields φ and φ∗, we compute the energy-momentum tensor to be:

Tµν = 1
c

[
∂L

∂(∂µφ)
∂νφ + ∂L

∂(∂µφ∗)
∂νφ
∗ − ηµνL

]
, (10.49)

where

∂L
∂(∂µφ)

= c2∂µφ
∗; ∂L

∂∂µφ∗
= c2∂µφ.

Substituting in (10.49) we find:

Tµν = c(∂µφ∗∂νφ + ∂νφ
∗∂µφ)− ηµν

L
c

. (10.50)

In particular we may verify the identity between energy density cT00 and Hamiltonian
density:

T00 = 1
c
(2φ̇∗φ̇ − L) = 1

c

(
φ̇∗φ̇ + c2∇φ∗ · ∇φ + m2c4

!2 |φ|2
)

= H
c

.

that is

H = c
∫

d3xT00 =
∫

d3x
(
ππ∗ + c2∇φ∗ · ∇φ + m2c4

!2 |φ|2
)

. (10.51)

As far as the momentum of the field is concerned we find

Pi =
∫

d3x
(
φ̇∗∂ iφ + φ̇∂ iφ∗

)
⇒ P = −

∫
d3x

(
π∇φ + π∗∇φ∗

)
. (10.52)

10.4 The Dirac Equation

In the previous sections we have focussed our attention on a scalar field, whose
distinctive property is the absence of internal degrees of freedom since it belongs
to a trivial representation of the Lorentz group. This means that its intrinsic angular
momentum, namely its spin, is zero.

We have also studied, both at the classical level and in a second quantized setting,
the electromagnetic field which, as a four-vector, transforms in the fundamental
representation of the Lorentz group. Its internal degrees of freedom are described by
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the two transverse components of the polarization vector. At the end of Chap. 6 we
have associated with the photon a unit spin: s = 1 (in units of !). As explained there,
by this we really mean that the photon helicity is & = 1.

Our final purpose is to give an elementary account of the quantum description
of electromagnetic interactions. The most important electromagnetic interaction at
low energy is the one between matter and radiation. Since the elementary building
blocks of matter are electrons and quarks, which have half-integer spin (s = 1/2),
such processes will involve the interaction between photons and spin 1/2 particles.
It is therefore important to complete our analysis of classical fields by including the
fermion fields, that is fields associated with spin 1/2 particles.

In this section and in the sequel we discuss the relativistic equation describing
particles of spin 1/2, known as the Dirac equation.

10.4.1 The Wave Equation for Spin 1/2 Particles

Historically Dirac discovered his equation while attempting to construct a relativistic
equation which, unlike Klein–Gordon equation, would allow for a consistent inter-
pretation of the modulus squared of the wave function as a probability density. As
we shall see in the following, this requirement can be satisfied if, unlike in the Klein–
Gordon case, the equation is of first order in the time derivative. On the other hand,
the requirement of relativistic invariance implies that the equation ought to be of
first order in the space derivatives as well. The resulting equation will be shown to
describe particles of spin s = 1

2 .
Let ψα(x) be the classical field representing the wave function. The most general

form for a first order wave equation is the following:

i!∂ψ
∂t

= (−ic!αi∂i + βmc2)ψ = Ĥψ. (10.53)

In writing (10.53) we have used a matrix notation suppressing the index α of ψα(x)

and the indices of the matrices αi ,β acting onψα namely αi = (αi )αβ , β = (β)αβ .
In order to determine the matrices αi ,β we require the solutions to (10.53) to

satisfy the following properties:

(i) ψα(x) must satisfy the Klein–Gordon equation for a free particle which imple-
ments the mass-shell condition:

E2 − |p|2c2 = m2c4;

(ii) It must be possible to construct a conserved current in terms of ψα whose
0-component is positive definite and which thus can be interpreted as a proba-
bility density;

(iii) Equation (10.53) must be Lorentz covariant. This would imply Poincaré
invariance.
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To satisfy the first requirement we apply the operator i! ∂
∂t to both sides of (10.53)

obtaining:

−!2 ∂
2ψ

∂t2 = (−ic!αi∂i + βmc2)(−ic!α j∂ j + βmc2)ψ, (10.54)

αiα j∂i∂ j = 1
2
(αiα j + α jαi )∂i∂ j , (10.55)

where, because of the symmetry of ∂i∂ j , the term αiα j∂i∂ j can be rewritten as
If we now require αi and β to be anticommuting matrices, namely to satisfy:

{
αi ,α j

}
≡ αiα j + α jαi = 2δi j 1;

{
αi ,β

}
= 0, (10.56)

and furthermore to square to the identity matrix:

β2 = (αi )2 = 1 (no summation over i), (10.57)

then (10.54) becomes:

−!2 ∂
2ψα

∂t2 = (−c2!2∇2 + m2c4)ψα, (10.58)

which is the Klein–Gordon equation
(
&'+ m2c2

!2

)
ψα = 0, (10.59)

where the differential operator is applied to each component of ψ.

Therefore, given a set of four matrices satisfying (10.56) and (10.57), (10.53)
implies the Klein–Gordon equation, as required by our first requirement. Equa-
tion (10.53) is called the Dirac equation. We still need to explicitly construct the
matrices αi ,β and to show that requirements (ii) and (iii) are also satisfied. In order
to discuss Lorentz covariance of the Dirac equation, it is convenient to introduce a
new set of matrices

γ 0 ≡ β; γ i ≡ βαi , (10.60)

in terms of which conditions (10.56) and (10.57) can be recast in the following
compact form

{
γ µ, γ ν

}
= 2ηµν1, (10.61)

where, as usual, i, j = 1, 2, 3 and µ, ν = 0, 1, 2, 3. In terms of the matrices γ µ

(10.53) takes the following simpler form5:

5 For the sake of simplicity, we shall often omit the identity matrix when writing combina-
tions of spinorial matrices. We shall for instance write the Dirac equation in the simpler form(
i!γ µ∂µ − mc

)
ψ(x) = 0.
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(
i!γ µ∂µ − mc1

)
ψ(x) = 0. (10.62)

It can be shown that the minimum dimension for a set of matrices γ µ satisfying
(10.61) is 4. Therefore the simplest choice is to make the internal index α run over
four values so that

ψα(x) =





ψ1(x)

ψ2(x)

ψ3(x)

ψ4(x)



 (10.63)

belongs to a four-dimensional representation of the Lorentz group.
It must be noted that although the Lorentz group representation S(#) acting on

the “vector” ψ has the same dimension as the defining representation # = (,µ
ν),

the two representations are different. In our case ψα is called a spinor, or Dirac
field, and correspondingly the matrix Sαβ belongs to the spinor representation of the
Lorentz group (see next section).6 This representation will be shown in Sect. 10.4.4
to describe a spin 1/2 particle. This seems to be in contradiction with the fact that ψ
has four components, corresponding to its four internal degrees of freedom, which
are twice as many as the spin states sz = ±!

2 of a spin 1
2 particle. We shall also prove

that if we want to extend the invariance from proper Lorentz transformation SO(1, 3)

to transformations in O(1, 3) which include parity, that is including reflections of
the three coordinate axes, all the four components of ψ are needed.

It is convenient to introduce an explicit representation of the γ -matrices (10.61),
called standard or Pauli representation, satisfying (10.61):

γ 0 =
(

12 0
0 −12

)
; γ i =

(
0 σ i

−σ i 0

)
, (i = 1, 2, 3) (10.64)

where each entry is understood as a 2× 2 matrix

0 ≡
(

0 0
0 0

)
; 12 =

(
1 0
0 1

)
.

The σ i matrices are the Pauli matrices of the non-relativistic theory, defined as:

σ 1 =
(

0 1
1 0

)
; σ 2 =

(
0 −i
i 0

)
; σ 3 =

(
1 0
0 −1

)
. (10.65)

We recall that they are hermitian and satisfy the relation:

σ iσ j = δi j 12 + iεi jkσκ , (10.66)

which implies

6 As mentioned in Chap. 7 the spinor representation cannot be obtained in terms of tensor repre-
sentations of the Lorentz group.
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Tr(σ iσ j ) = 2δi j ; {σi , σ j } = 2δi j 12; [σ i , σ j ] = 2iεi jkσ
k . (10.67)

The matrices αi ,β read:

αi =
(

0 σ i

σ i 0

)
; β =

(
12 0
0 −12

)
. (10.68)

Using the representation (10.64), the Dirac equation can be written as a coupled
system of two equations in the upper and lower components of the Dirac spinor
ψα(x). Indeed, writing

ψα(x) =
(
ϕ(x)

χ(x)

)
; ϕ(x) =

(
ϕ1

ϕ2

)
; χ(x) =

(
χ1

χ2

)
, (10.69)

where ϕ(x), e χ(x) are two-component spinors, the Dirac equation (10.62) becomes

{
i!c

[(
12 0
0 −12

)
∂

∂x0 +
(

0 σ i

−σ i 0

)
∂

∂xi

]
− mc2

(
12 0
0 12

)}(
ϕ

χ

)
= 0.

(10.70)

The matrix equation (10.70) is equivalent to the following system of coupled
equations:

i!
∂

∂t
ϕ = −i!cσ · ∇χ + mc2ϕ, (10.71)

i! ∂
∂t
χ = −i!cσ · ∇ϕ − mc2χ , (10.72)

where σ ≡ (σ i ) denotes the vector whose components are the three Pauli matrices.
The two-component spinors ϕ and χ are called large and small components of the
Dirac four-component spinor, since, as we now show, in the non-relativistic limit,
χ becomes negligible with respect to ϕ.

To show this we first redefine the Dirac field as follows:

ψ = ψ ′e−i mc2
! t , (10.73)

so that (10.62) takes the following form:
(

i! ∂
∂t

+ mc2
)
ψ ′ =

[
cαi (−i!∂i ) + βmc2

]
ψ ′.

The rescaled spinor ψ ′ is of particular use when evaluating the non-relativistic limit,
since it is defined by “subtracting” from the time evolution of ψ the part due to its
rest energy, so that its time evolution is generated by the kinetic energy operator only:
Ĥ −mc2 Î . In other words i!∂tψ

′ is of the order of the kinetic energy times ψ ′ and,
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in the non-relativistic limit, it is negligible compared to mc2ψ ′. Next we decompose
the field ψ ′ as in (10.69) and, using (10.68), we find:

i!
∂

∂t
ϕ = cσ · p̂χ , (10.74)

(
i! ∂
∂t

+ 2mc2
)
χ = cσ · p̂ϕ, (10.75)

where we have omitted the prime symbols in the new ϕ and χ . In the non-relativistic
approximation we only keep on the left hand side of the second equation the term
2mc2χ , so that

χ = 1
2mc

σ · p̂ϕ. (10.76)

Substituting this expression in the equation for ϕ we obtain:

i!
∂

∂t
ϕ = 1

2m
p̂2ϕ = − !2

2m
∇2ϕ, (10.77)

where we have used the identity:

(p̂ · σ )(p̂ · σ ) = |p̂|2 = −!2∇2, (10.78)

which is an immediate consequence of the properties (10.66) of the Pauli matrices.
Equation (10.77) tells us that in the non-relativistic limit the Dirac equation

reduces to the familiar Schroedinger equation for the two component spinor wave
function ϕ. Moreover, from (10.76), we realize that the lower components χ of the
Dirac spinor are of subleading order O( 1

c ) with respect to the upper ones ϕ and there-
fore vanish in the non-relativistic limit c→∞. This justifies our referring to them
as the small and large components ofψ , respectively. We also note that in the present
non-relativistic approximation, taking into account that the small components χ can
be neglected, the probability density ψ†ψ = ϕ†ϕ + χ†χ reduces to ϕ†ϕ as it must
be the case for the Schroedinger equation.

10.4.2 Conservation of Probability

We now show that property (ii) of Sect. 10.4.1 is satisfied by the solutions to the Dirac
equation, namely that it is possible to construct a conserved probability in terms of
the spinor ψα. Let us take the hermitian conjugate of the Dirac equation (10.62)

−i!∂µψ†γ µ† − mcψ† = 0. (10.79)

We need now the following property of the γ µ-matrices (10.63) which can be easily
verified:
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γ 0γ µ† = γ µγ 0. (10.80)

Multiplying both sides of (10.79) from the right by the matrix γ 0 and defining the
Dirac conjugate ψ̄ of ψ as

ψ̄(x) = ψ†(x)γ 0,

we find:

−i!∂µψ̄γ µ − mcψ̄ = 0,

where we have used (10.80). Thus the field ψ̄(x) satisfies the equation:

ψ̄(x)(i!←−∂ µγ
µ + mc) = 0, (10.81)

where, by convention

ψ̄
←−
∂ µ ≡ ∂µψ̄ .

Next we define the following current:

Jµ = ψ̄γ µψ. (10.82)

and assume that Jµ transforms as a four-vector. This property will be proven to
hold in the next subsection. Using the Dirac equation we can now easily show that
∂µ Jµ = 0, that is Jµ is a conserved current:

∂µ Jµ = (∂µψ̄)γ µψ + ψ̄γ µ∂µψ = ψ̄
←−
∂ µγ

µψ + ψ̄γ µ∂µψ

= i
mc
!
ψ̄ψ − i

mc
!
ψ̄ψ = 0. (10.83)

Note that the 0-component ρ = J 0 = ψ†ψ of this current is positive definite. If
we normalize ψ so as to have dimension [L−3/2], then ρ has the dimensions of
an inverse volume and therefore it can be consistently given the interpretation of a
probability density, the total probability being conserved by virtue of (10.83). The
second requirement (ii) is therefore satisfied.

10.4.3 Covariance of the Dirac Equation

We finally check that Dirac equation is covariant under Lorentz transformations, so
that also the third requirement of Sect. 10.4.1 is satisfied

Lorentz covariance of the Dirac equation means that if in a given reference frame
(10.62) holds, then in any new reference frame, related to the former one by a Lorentz
transformation, the same equation should hold, although in the transformed variables.
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Let us write down the Dirac equation in two frames S′ and S related by a Lorentz
(or in general a Poincaré) transformation:

(
i!γ µ∂ ′µ − mc

)
ψ ′(x ′) = 0, (10.84)

(
i!γ µ∂µ − mc

)
ψ(x) = 0, (10.85)

where ∂ ′µ = ∂
∂x ′µ and x ′µ = ,µ

νxν .
We must require (10.84) to hold in the new frame S′ if (10.85) holds in the original

frame S.
Let S ≡ (Sαβ) = S(#) denote the matrix D(#) = (Dα

β) in (7.47) representing
the action of a Lorentz transformation # on the spinor components. A Poincaré
transformation on ψα(x) is then described as follows:

ψ ′α(x ′) = Sαβψβ(x), (10.86)

where, as usual, x ′ = #x−x0. We use a matrix notation for the spinor representation
while we write explicit indices for the defining representation ,µ

ν of the Lorentz
group. Since:

∂

∂x ′µ
= ∂xν

∂x ′µ
∂

∂xν
= (,−1)νµ∂ν,

we have:

(
i!γ µ∂ ′µ − mc

)
ψ ′(x ′) =

(
i!γ µ(,−1)νµ∂ν − mc

)
Sψ(x) = 0. (10.87)

Multiplying both sides from the left by S−1 we find:
[
i!(,−1)νµ

(
S−1γ µS

)
∂ν − mc

]
ψ(x) = 0. (10.88)

We see that in order to obtain covariance, we must require

(,−1)νµS−1γ µS = γ ν ⇒ S−1γ νS = ,νµγ
µ. (10.89)

In that case (10.88) becomes:

(
i!γ ν∂ν − mc

)
ψ(x) = 0,

that is we retrieve (10.85). In the next subsection we shall explicitly construct the
transformation S satisfying condition (10.88). We then conclude that Dirac equation
is covariant under Lorentz (Poincaré) transformations.

We may now check that the current Jµ = ψ̄γ µψ introduced in the previous
subsection transforms as a four vector. From (10.86) we have, suppressing spinor
indices
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ψ
′
(x ′) = Sψ(x) = ψ†(x)S†γ 0, (10.90)

so that

ψ
′
(x ′)γ µψ ′(x ′) = ψ†(x)γ 0(γ 0S†γ 0)γ µSψ(x) = ψ(γ 0S†γ 0)γ µSψ, (10.91)

where we have used the property (γ 0)2 = 1. As we are going to prove below, the
following relation holds:

γ 0S†γ 0 = S−1. (10.92)

In this case, using (10.89), (10.91) becomes

ψ
′
(x ′)γ µψ ′(x ′) = ψ(x)S−1γ µSψ = ,µ

νψ(x)γ νψ(x), (10.93)

which shows that the current Jµ transforms as a four-vector.

10.4.4 Infinitesimal Generators and Angular Momentum

To find the explicit form of the spinor matrix S(#) we require it to induce the
transformation of the γ -matrices given by (10.89). Actually it is sufficient to perform
the computation in the case of infinitesimal Lorentz transformations.

We can write the Poincaré-transformed spinor ψ ′(x ′) in (10.86) as resulting from
the action of a differential operator O(#,x0), defined in (9.101):

ψ ′α(x ′) = O(#,x0)ψ
α(x ′) = Sαβψβ(x), (10.94)

The generators Ĵρσ of O(#,x0) are expressed, see (9.102), as the sum of a differential
operator M̂ρσ acting on the functional form of the field, and a matrix 3ρσ acting
on the internal index α (which coincide with (−i!) times the matrices (Lρσ )αβ in
(7.83)). These latter are the Lorentz generators in the spinor representation:

S(#) = e
i

2! θρσ3
ρσ

, (10.95)

and satisfy the commutation relations (9.103):

[
3µν,3ρσ

]
= −i!

(
ηνρ3µσ + ηµσ3νρ − ηµρ3νσ − ηνσ3µρ

)
. (10.96)
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We can construct such matrices in terms of the γ µ ones as follows:

3µν = −!
2
σµν, (10.97)

where the σµν matrices are defined as:

σµν ≡ i
2
[γ µ, γ ν] = −σνµ. (10.98)

Using the properties (10.61) of the γ µ-matrices, the reader can verify that 3µν

defined in (10.97) satisfy the relations (10.96). The expression of an infinitesi-
mal Lorentz transformation on ψ(x) follows from (7.83), with the identification
(Lρσ )αβ = i

!(3ρσ )αβ = − i
2 (σρσ )αβ :

δψ(x) = i
2!
δθρσ Ĵρσψ(x)

= 1
2
δθρσ

[
− i

2
σρσ + xρ∂σ − xσ ∂ρ

]
ψ(x), (10.99)

where we have adopted the matrix notation for the spinor indices and used the
identification:

Ĵρσ = M̂ρσ +3ρσ = −i!(xρ∂σ − xσ ∂ρ)−
!
2
σρσ . (10.100)

To verify that the matrices3ρσ defined in (10.97) generate the correct transformation
property (10.89) of the γ µ matrices, let us verify (10.89) for infinitesimal Lorentz
transformations:

,µ
ν ≈ δµν + 1

2
δθρσ (Lρσ )µν = δµν + δθµ

ν,

S(#) ≈ 1− i
4
δθρσ σ

ρσ , (10.101)

where we have used the matrix form (4.170) of the Lorentz generators Lρσ =
[(Lρσ )µν] in the fundamental representation: (Lρσ )µν = ηρµδσν − ησµδ

ρ
ν .

Equation (10.89) reads to lowest order in δθ :
(

1 + i
4
δθρσ σ

ρσ

)
γ µ

(
1− i

4
δθρσ σ

ρσ

)
= γ µ + 1

2
δθρσ (Lρσ )µνγ

ν .

The above equation implies:

i
2
[σρσ , γ µ] = (Lρσ )µνγ

ν = ηρµγ σ − ησµγ ρ, (10.102)

which can be verified using the properties of theγ µ-matrices. Having checked (10.89)
for infinitesimal transformations, the equality extends to finite transformations as
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well, since the latter can be expressed as a sequence of infinitely many infinitesimal
transformations.

As far as (10.92) is concerned, from the definition (10.97) we can easily prove
the following property:

γ 0(3ρσ )†γ 0 = i!
4
γ 0[γ ρ, γ σ ]†γ 0 = i!

4
γ 0[(γ σ )†, (γ ρ)†]γ 0

= i!
4

[γ 0(γ σ )†γ 0, γ 0(γ ρ)†γ 0] = − i!
4

[γ ρ, γ σ ] = 3ρσ .

Let us now compute the left hand side of (10.92) by writing the series expansion of
the exponential and use the above property of 3µν :

γ 0S†γ 0 = γ 0

[ ∞∑

n=0

1
n!

(
− i

2!
θρσ3

ρσ†
)n

]

γ 0 =
∞∑

n=0

1
n!

(
− i

2!
θρσ γ

03ρσ†γ 0
)n

= exp
(
− i

2!
θρσ γ

03ρσ†γ 0
)

= exp
(
− i

2!
θρσ3

ρσ

)
= S−1.

(10.103)

This proves (10.92).
In terms of the generators Ĵρσ of the Lorentz group we can define the angular

momentum operator Ĵ = ( Ĵi ) as in (9.106) of last chapter:

Ĵi = −1
2
εi jk Ĵ jk = M̂i +3i ,

M̂i = εi jk x̂ i p̂ j ; 3i = −1
2
εi jk3

jk, (10.104)

where, as usual M̂ = (M̂i ) denotes the orbital angular momentum, while we have
denoted by % = (3i ) the spin operators acting as matrices on the internal spinor
components. Let us compute the latter using the definition (10.97) of 3µν :

3i = −1
2
εi jk3

jk = !
4
εi jkσ

jk = !
2

(
σ i 0
0 σ i

)
, (10.105)

The above expression is easily derived from the definition of σ i j and the explicit
form of the γ µ-matrices:

σ i j = i
2
[γ i , γ j ] = − i

2

( [σ i , σ j ] 0
0 [σ i , σ j ]

)
= εi jk

(
σ k 0
0 σ k

)
,

where we have used the properties (10.67) of the Pauli matrices and the relation
εi jkε

jk5 = 2δ5i . For a massive fermion, like the electron, % = (3i ) generate the spin
group G(0) = SU(2), see Sect. 9.4.1, which is the little group of the four-momentum
in the rest frame S0 in which p = p̄ = (mc, 0). In Sect. 9.4.2 we have shown that
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|%|2 = −ŴµŴ µ/(m2c2), i.e. the spin of the particle, is a Poincaré invariant quantity.
In our case, using (10.105), we have:

|%|2 = !2s(s + 1)1 = 3
4

!21, (10.106)

from which we deduce that the particle has spin s = 1/2, namely that the states
|p, r〉 belong to the two-dimensional representation of SU(2), labeled by r. The
matrix R(#, p) in (9.112) is thus an SU(2) transformation generated by the matrices
si ≡ !σi/2, see Appendix F:

R(#, p) = exp
(

i
!
θ i si

)
, (10.107)

where, if # were a rotation, θ i would coincide with the rotation angles, and thus be
independent of p, whereas if # were a boost, θ i would depend on p and on the boost
parameters.

Note that, in the spinorial representation of the Lorentz group, which acts on the
index α of ψα(x), a generic rotation with angles θ i is generated by the matrices 3i
in (10.105) and has the form:

S(#R) = e
i
! θ

i3i =
(

e
i
! θ

i si 0
0 e

i
! θ

i si

)

=
(

S(θ) 0
0 S(θ)

)
, (10.108)

S(θ) ≡ e
i
! θ

i si = cos
(
θ

2

)
+ iσ · θ̂ sin

(
θ

2

)
, (10.109)

where θ ≡ (θ i ), θ ≡ |θ | and θ̂ ≡ θ/θ . Equation (10.109) is readily obtained along
the same lines as in the derivation of the 4 × 4 matrix representation of a Lorentz
boost in Chap. 4. Equation (10.108) shows that, with respect to the spin group SU(2),
the spinorial representation is completely reducible into two two-dimensional rep-
resentations acting on the small and large components of the spinor, respectively.
Moreover we see that a rotation by an angle θ of the RF about an axis, amounts to a
rotation by an angle θ /2 of a spinor.

If the particle is massless, R is an SO(2) rotation generated by the helicity operator
& in the frame in which the momentum is the standard one p = p̄. Choosing7

p̄ = (E, 0, 0, E)/c, &̂ = 33 and

R(#, p) = exp
(

i
!
θs3

)
, (10.110)

Finally we may verify that the spin % does not commute with the Hamiltonian, i.e.
it is not a conserved quantity. Indeed, the expression of the Hamiltonian given in
(10.53), namely

7 Note that, with respect to the last chapter, we have changed our convention for the standard
momentum of a massless particle. Clearly the discussion in Chap. 9 equally applies to this new
choice, upon replacing direction 1 with direction 3.
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H = −ic!αi∂i + βmc2 = cαi p̂i + βmc2 =
(

mc2 cp̂ · σ

cp̂ · σ −mc2

)
,

where we have used the explicit matrix representation (10.68) of αi ,β. Using for
% the expression (10.105) we find:

[H,3k] = ic!
(

0 εki jσ
i p̂ j

εki jσ
i p̂ j 0

)
= ic!εki jα

j p̂i /= 0. (10.111)

We see that, considering the third component 33, the commutator does not vanish ,
except in the special case p1 = p2 = 0, p3 /= 0. In general the component of % along
the direction of motion, which is the helicity &, is conserved. This is easily proven
by computing [H,% · p̂] = [H,3i p̂i ] and using the property that H commutes with
p̂i , so that, in virtue of (10.111), [H,3i p̂i ] = [H,3i ] p̂i = 0.

Similarly also the orbital angular momentum is not conserved since, if we compute
[H, M̂k] and use the commutation relation [x̂ i , p̂ j ] = i!δi

j , we find:

[H, M̂k] = εki j [H, x̂ i ] p̂ j = cεki jα
5[ p̂5, x̂ i ] p̂ j = −ic!εki jα

i p̂ j .

Summing the above equation with (10.111) we find:

[H, Ĵk] = [H, M̂k +3k] = −ic!εki jα
i p̂ j + ic!εki jα

i p̂ j = 0,

namely that the total angular momentum J = M + % is conserved.
So far we have been considering the action of the rotation subgroup of the Lorentz

group on spinors. We have learned in Chap. 4 that a generic proper Lorentz transfor-
mation can be written as the product of a boost and a rotation:

S(#) = S(#B)S(#R). (10.112)

Let us consider now the boost part. Lorentz boosts are generated, in the fundamen-
tal representation, by the matrices Ki defined in Sect. 4.7.1 of Chap. 4. To find the
representation of these generators on the spinors, let us expand a generic Lorentz
generator in the spinor representation:

i
2!
θµν3

µν = i
!
θ0i3

0i + i
!
θi3

i = λi K i + i
!
θi3

i , (10.113)

where, as usual, θi = −εi jkθ
jk/2 while λi ≡ θ0i . The boost generators K i =

i30i/! read:

K i = 1
2
γ 0γ i = 1

2
αi . (10.114)

A boost transformation is thus implemented on a spinor by the following matrix

S(#B) = e
i
! λi3

0i = eλi K i
. (10.115)
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The above matrix can be evaluated by noting that (λi K i )2 = −λiλ jγ
iγ j/4 = λ2/4,

where λ = |λ| and we have used the anticommutation properties of the γ i -matrices.
By using this property and defining the unit vector λ̂i = λi/λ the expansion of the
exponential on the right hand side of (10.115) boils down to:

S(#B) = cosh
(
λ

2

)
1 + sinh

(
λ

2

)
λ̂iαi . (10.116)

From the identifications cosh(λ) = γ (v), sinh(λ) = γ (v)v/c, λ̂ = (λ̂i ) = v/v, see
Sect. 4.7.1 of Chap. 4, we derive:

cosh
(
λ

2

)
=

√
γ (v) + 1

2
; sinh

(
λ

2

)
=

√
γ (v)− 1

2
,

S(#B) =
√
γ (v) + 1

2
1 +

√
γ (v)− 1

2
vi

v
αi . (10.117)

It is useful to express the boost #p which connects the rest frame S0 of a massive
particle to a generic one in which p = (pµ) = (Ep/c, p). In this case we can write
γ (v) = E/(mc2), v/c = pc/Ep and (10.117), after some algebra, becomes:

S(#p) = 1
√

2m(mc2 + Ep)
(pµγ

µ + mcγ 0)γ 0

= 1
√

2m(mc2 + Ep)

(
(p0 + mc)12 p · σ

p · σ (p0 + mc)12

)
. (10.118)

10.5 Lagrangian and Hamiltonian Formalism

The field equations of the Dirac field can be derived from the Lagrangian density:

L = i
!c
2

(
ψ̄(x)γ µ∂µψ(x)− ∂µψ̄(x)γ µψ(x)

)
− mc2ψ̄(x)ψ(x). (10.119)

Indeed, since

∂L
∂∂µψ̄(x)

= −i
!c
2
γ µψ(x),

we find

∂L
∂ψ̄(x)

− ∂µ
(

∂L
∂∂µψ̄(x)

)
= 0⇔

(
i!γ µ∂µ − mc1

)
ψ(x) = 0, (10.120)

that is, the Dirac equation.
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In an analogous way we find the equation for the Dirac conjugate spinor ψ̄(x):

∂L
∂ψ

(x)− ∂µ
(

∂L
∂∂µψ(x)

)
= 0⇔ ψ̄(x)

(
i!γ µ←−∂µ + mc1

)
= 0. (10.121)

We note that the Lagrangian density has, in addition to Lorentz invariance, a further
invariance under the phase transformation

ψ(x) −→ ψ ′(x) = e−iαψ(x), ψ̄(x) −→ ψ̄ ′(x) = eiαψ̄(x). (10.122)

α being a constant parameter. In Sect. 10.2.1, we have referred to analogous trans-
formations on a complex scalar field as global U (1) transformations, the term global
refers to the property of α of being constant. This is indeed the same invariance
exhibited by the Klein–Gordon Lagrangian of a complex scalar field and leads to
conservation of a charge according to Noether theorem.

Let us compute the energy-momentum tensor

T νµ = 1
c

[
∂L

∂∂νψ(x)
∂µψ(x) + ∂µψ̄(x)

∂L
∂∂νψ̄(x)

− ηµνL
]

= 1
c

[
i
!c
2

(
ψ̄γ ν∂µψ − ∂µψ̄γ νψ

)
− ηµνL

]
. (10.123)

We observe that the Lagrangian density is zero on spinors satisfying the Dirac equa-
tion. We may therefore write

T νµ = i
!
2

(
ψ̄γ ν∂µψ − ∂µψ̄γ νψ

)
. (10.124)

This tensor is not symmetric. We can however verify that the divergences of T µν

with respect to both indices vanish:

∂µT νµ = ∂µT µν = 0, (10.125)

The latter equality is a consequence of the Noether theorem, being µ the index of
the conserved current. As for the former, it is easily proven as follows:

∂µT νµ = i
!
2

(
∂µψ̄γ

ν∂µψ + ψ̄γ ν&'ψ − &'ψ̄γ νψ − ∂µψ̄γ ν∂µψ
)

= 0,

where we have used the Klein–Gordon equation forψ and ψ̄ .Using property (10.125)
we can define a symmetric energy momentum-tensor 7µν simply as the symmetric
part of T µν :

7µν = 1
2
(T µν + T νµ), (10.126)
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since (10.125) guarantee that ∂µ7µν = 0. The four-momentum of the spinor field

Pµ =
∫

V
d3xT 0µ,

has the following form

Pµ = i
!
2

∫

V
d3x

(
ψ̄γ 0∂µψ − ∂µψ̄γ 0ψ

)
, (10.127)

while the field Hamiltonian H = cp0 reads

H = i
!
2

∫

V
d3x

(
ψ†ψ̇ − ψ̇†ψ

)
. (10.128)

Using the Dirac equation and integrating by parts, we can easily prove that the right
hand side is the sum of two equal terms:

i!
∫

V
d3x ˙̄ψγ 0ψ = −i!c

∫

V
d3x∂i ψ̄γ

iψ − mc2
∫

V
d3xψ̄ψ

= i!c
∫

V
d3xψ̄γ i∂iψ − mc2

∫

V
d3xψ̄ψ = −i!

∫

V
d3xψ̄γ 0ψ̇,

so that the Hamiltonian can also be written in the following simpler form:

H = i!
∫

V
d3xψ†ψ̇ . (10.129)

Let us now compute the conjugate momenta of the Hamiltonian formalism:

π(x) = ∂L(x)

∂ψ̇(x)
= i

!
2
ψ†(x), (10.130)

π†(x) = ∂L(x)

∂ψ̇†(x)
= −i

!
2
ψ(x). (10.131)

We note that from these equations it follows that the canonical variablesπ,ψ,π†,ψ†

are not independent: π† ∝ ψ,π ∝ ψ†. In view of the quantization of the Dirac field,
we need to deal with independent canonical variables. It is useful, in this respect, to
redefine the Lagrangian density in the following way:

L = i!cψ̄(x)γ µ∂µψ(x)− mc2ψ̄(x)ψ(x). (10.132)

The reader can easily verify that the above expression differs from the previous
definition (10.119) by a divergence. We then define, as the only independent variables,
the components of ψ(x), so that the corresponding conjugate momenta read
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π(x) = ∂L(x)

∂ψ̇
= i!ψ†(x). (10.133)

From the canonical Poisson brackets (8.225) and (8.226) and the above expression
of between π(x), we find:

{
ψα(x, t),ψ†

β(y, t)
}

= − i
h
δ3(x − y)δαβ , (10.134)

{
ψα(x, t),ψβ(y, t)

}
=

{
ψ†
α(x, t),ψ†

β(y, t)
}

= 0. (10.135)

It is convenient to rewrite the Hamiltonian H in (10.129) using Dirac equa-
tion (10.53):

H = i!
∫

V
d3xψ†ψ̇ =

∫

V
d3xψ†[−i!cαi∂i + mc2β]ψ. (10.136)

The reader can verify that the Hamiltonian density in the above formula can be
written in the form:

H = παψ
α − L. (10.137)

We can also verify that the Hamilton equation

π̇†(x) = − δH
δψ†(x)

= −
[
−i!cαi∂i + mc2β

]
ψ, (10.138)

coincides with the Dirac equation

i!ψ̇ = (−i!cαi∂i + mc2β)ψ.

10.6 Plane Wave Solutions to the Dirac Equation

We now examine solutions to the Dirac equation having definite values of energy
and momentum. A spinor field with definite four-momentum p = (pµ) and spin r ,
must have the general plane-wave form given in (9.113):

ψp,r (x) = cpw(p, r)e
i
! (p·x−Et) = cpw(p, r)e−

i
! p·x , (10.139)

where w(p, r) is a four-component Dirac spinor and cp a Lorentz invariant normal-
ization factor, to be fixed later. Inserting (10.139) into (10.62), and using the short
hand notation / p ≡ γ µ pµ, we find that the generic spinor w(p) satisfies the equation
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( / p − mc) w(p, r) = 0. (10.140)

where pµ =
( E

c , p
)
. If we decompose w(p, r) into two-dimensional spinors as in

(10.69) and use the representation (10.64) of the γ -matrices (10.140) becomes:

( E
c − mc −σ · p
σ · p − E

c − mc

) (
ϕ

χ

)
= 0. (10.141)

We have shown that each component of ψ(x) is in particular solution to the Klein–
Gordon equation (10.59) which implements the mass-shell condition. This can be
also verified by multiplying (10.140) to the left by the matrix ( / p + mc):

( / p + mc)( / p − mc)w(p, r) = ( / p2 + mc / p − mc / p − m2c2)w(p, r) = 0.

Using the anti-commutation properties of the γ µ-matrices we find

/ p2 = γ µγ ν pµ pν = 1
2
(γ µγ ν + γ νγ µ)pµ pν = ηµν pµ pν = p2, (10.142)

which implies

( / p + mc)( / p − mc)w(p, r) = (p2 − m2c2)w(p, r) = 0, (10.143)

namely the mass-shell condition. As noticed earlier, the Klein–Gordon equation
contains negative energy solutions besides the positive energy ones:

E2

c2 = p2 + m2c2 ⇒ E = ±Ep = ±
√

|p|2c2 + m2c4. (10.144)

The problem of interpreting such solutions, as already mentioned in the case of the
complex scalar field, will be resolved by the field quantization which associates them
with operators creating antiparticles. We write the solutions with E = ±Ep in the
following form:

ψ (+)
p,r (x) ≡ cpw((Ep/c, p), r)e

i
! (p·x−Ept) = cpu(p, r)e−

i
! p·x ,

ψ (−)
p,r (x) ≡ cpw((−Ep/c, p), r)e

i
! (p·x−Et) = cpv((Ep/c,−p), r)e

i
! (p·x+Ept),

where we have defined u(p, r) ≡ w
(( Ep

c , p
)
, r

)
, v

(( Ep
c ,−p

)
, r

)
≡ w

((
− Ep

c , p
)
, r

)
.

We shall choose the normalization factor cp to be: cp ≡
√

mc2

EpV . Note that the expo-

nent in the definition of ψ (−)
p,r acquires a Lorentz-invariant form if we switch p into

−p. We can then write:

ψ (+)
p,r (x) ≡

√
mc2

EpV
u(p, r)e−

i
! p·x , (10.145)
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ψ
(−)
−p,r (x) ≡

√
mc2

EpV
v(p, r)e

i
! p·x . (10.146)

In the above solutions we have defined p = (pµ) =
( Ep

c , p
)

so that (10.146)
describes a negative-energy state with momentum −p, v(p, r) ≡ w(−p, r).

The general solution to the Dirac equation will be expanded in both kinds of
solutions, and have the following form:

ψ(x) =
∫

d3p
(2π!)3 V

2∑

r=1

(
c(p, r)ψ (+)

p,r (x) + d(−p, r)∗ψ (−)
p,r (x)

)
,

where c, d are complex numbers representing the components of ψ(x) relative to
the complete set of solutions ψ (±)

p,r (x). By changing p into −p in the integral of the
second term on the right hand side, we have:

ψ(x) =
∫

d3p
(2π!)3 V

2∑

r=1

(
c(p, r)ψ (+)

p,r (x) + d(p, r)∗ψ (−)
−p,r (x)

)

=
∫

d3p
(2π!)3

√
mc2V

Ep

2∑

r=1

(
c(p, r)u(p, r)e−

i
! p·x + d(p, r)∗v(p, r)e

i
! p·x

)
.

(10.147)

We need now to explicitly construct the spinors u(p, r), v(p, r). Being u(p, r) =
w(p, r) and v(p, r) = w(−p, r), the equation for u(p, r) is the same as (10.140),
while the one for v(p, r) is obtained from (10.140) by replacing p→−p:

( / p − mc)u(p, r) = 0; ( / p + mc)v(p, r) = 0. (10.148)

The Lorentz covariance of the above equations implies that S(#)u(p, r) and S(#)v

(p, r) must be a combination of u(#p, s) and v(#p, s),8 with coefficients given by
the rotation R(#, p)s

r of (10.107), or (10.110) for massless particles, according to
our discussion in Sect. 9.4.1:

S(#)u(p, r) = R(#, p)r ′
r u(#p, r ′)

S(#)v(p, r) = R(#, p)r ′
r v(#p, r ′).

(10.149)

These are nothing but the transformation properties derived in (9.118). In the frame
S0 in which the momentum p is the standard one p̄, u( p̄, r) and v( p̄, r) transform

8 This can be easily ascertained by multiplying both (10.148) to the left by S(#). We find that
S(#)u(p, r) and S(#)v(p, r) satisfy the following equations: (S(#)/ pS(#)−1−mc)S(#)u(p, r) =
0 and (S(#)/ pS(#)−1 + mc)S(#)v(p, r) = 0. Next we use property (10.89) and invari-
ance of the Lorentzian scalar product γ · p ≡ γ µ pµ =/ p to write S(#)/ pS(#)−1 =
/ p′ = γ µ p′ν , where p′ = #p. Thus the transformed spinors satisfy (10.148) with the transformed
momentum p′, and consequently, should be a combination of u(p′, s) and v(p′, s), respectively.
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covariantly under the action of the spin group. Let us construct them in this frame
and then extend their definition to a generic one.

Consider a massive particle, m /= 0, and let us first examine the solutions of the
coupled system (10.141) in the rest frame S0, where p = 0, namely p̄ = (mc, 0).

Equation (10.141) becomes:
(

E − mc2
)
ϕ = 0;

(
E + mc2

)
χ = 0. (10.150)

Then we have either

E = Ep=0 = mc2; ϕ /= 0,χ = 0,

or
E = −Ep=0 = −mc2; ϕ = 0,χ /= 0.

The non zero spinors in the two cases can be chosen arbitrarily. We choose them to
be eigenvectors of σ 3 :

ϕ1 =
(

1
0

)
; ϕ2 =

(
0
1

)
. (10.151)

In S0 we can then write the positive and negative energy solutions in the momentum
representation as

u(0, r) ≡ u( p̄, r) =
(
ϕr
0

)
; v(0, r) ≡ v( p̄, r) =

(
0
ϕr

)
r = 1, 2, (10.152)

where 0 =
(

0
0

)
. Since the ϕr are eigenstates of σ 3, the rest frame solutions

u(0, r) and v(0, r) are eigenstates of the operator:

33 =
( !

2 σ
3 0

0 !
2 σ

3

)
, (10.153)

corresponding to the eigenvalues ±!/2.

Once the solutions in the rest frame are given we may construct the solutions
u(p, r) and v(p, r) of the Dirac equation in a generic frame S where p /= 0 as
follows:

u(p, r) = / p + mc
√

2m(mc2 + Ep)
u(0, r), (10.154)

v(p, r) = −/ p + mc
√

2m(mc2 + Ep)
v(0, r). (10.155)

The denominators appearing in (10.154) and (10.155) are normalization factors deter-
mined in such a way that the spinors u(p, r), v(p, r) obey simple normalization
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conditions (see (10.168)–(10.169) of the next section). It is straightforward to show
that u(p, r) and v(p, r) satisfy (10.148) by using the properties

( / p + mc)( / p − mc) = ( / p − mc)( / p + mc)

= p2 − m2c2 + mc / p − mc / p = p2 − m2c2 = 0,
(10.156)

which descend from (10.142).
Using the representation (10.64) of the γ -matrices and the explicit form of / p, we

obtain u(p, r) and v(p, r) in components:

u(p, r) =





√
Ep+mc2

2mc2 ϕr
p·σ√

2m(Ep+mc2)
ϕr



 ; v(p, r) =




p·σ√

2m(Ep+mc2)ϕr√
Ep+mc2

2mc2 ϕr



 . (10.157)

Let us show that the above vectors transform as in (10.149) with respect to
rotations #R :

S(#R)u(p, r) = e
i
! θ

i3i u(p, r) =





√
Ep+mc2

2mc2 S(θ i )ϕr

S(θ i )p·σ√
2m(Ep+mc2)

ϕr





=





√
Ep+mc2

2mc2 ϕ′r
S(θ i )p·σS(θ i )−1√

2m(Ep+mc2)
ϕ′r



 , (10.158)

where:

ϕ′r ≡ S(θ i )ϕr = S(θ i )s
rϕs = Rs

rϕs . (10.159)

Let us now use the property of the Pauli matrices to transform under conjugation by
an SU(2) matrix S(θ), θ ≡ (θ i ), as the components of a three-dimensional vector
σ ≡ (σi ) under a corresponding rotation R(θ), see Appendix (F):

S(θ)−1σi S(θ) = R(θ)i
jσ j ⇒ S(θ)σi S(θ)−1 = R(θ)−1

i
jσ j . (10.160)

We can then write:

S(θ)p · σS(θ)−1 = p ·
(

R(θ)−1σ
)

= p′ · σ , (10.161)

where p′ ≡ R(θ)p. Since #R p = (p0, p′), we conclude that

S(#R)u(p, r) = Rs
r





√
Ep+mc2

2mc2 ϕs

p′·σ√
2m(Ep+mc2)

ϕs



 = Rs
r u(#R p, s). (10.162)
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A similar derivation can be done for v(p, r). If # is a boost, of the form # =
exp

( i
!ω0i J 0i ), the corresponding representation on the spinors reads S(#) =

exp
( i

!ω0i3
0i ). The resulting SU(2) rotation R(#, p), which we are not going to

derive, is the Wigner rotation.
We note that u(p, r) and v(p, r) are not eigenstates of the third component of the

spin operator 33 (10.153) except in the special case of p1 = p2 = 0, p3 /= 0. This
can be explained in light of the discussion done in Sect. 9.4.1 about little groups.
The solutions u(p, r) and v(p, r), for a fixed p, transform as doublets with respect
to the little group of the momentum p, which we have denoted by G(0)

p : The action
of G(0)

p on the solutions u(p, r) and v(p, r), according to (10.149), does not affect
their dependence on p, and only amounts to an SU(2)-transformation on the index r.
This group is related to the little group G(0) = SU(2) of p̄ = (mc, 0), generated by
the3i matrices as follows: G(0)

p = #p · SU(2) ·#−1
p . This means that its generators

are 3′i = S(#p)3i S(#p)
−1. If instead we act on u(p, r) and v(p, r) by means

of a G(0) = SU(2)-transformation, it will affect dependence of these fields on p,
mapping it into p′ = (p0, Rp). Therefore, if u( p̄, r) and v( p̄, r) are eigenvectors of
33, u(p, r) and v(p, r) will be eigenvectors of 3′3.

In Sect. 9.4.1 of last chapter, a general method was applied to the construction
of the single-particle quantum states |p, r〉 acted on by a unitary irreducible repre-
sentation of the Lorentz group. The method consisted in first constructing the states
of the particle | p̄, r〉 in some special frame S0 in which the momentum of the par-
ticle is the standard one p̄, and on which an irreducible representation R of the
little group G(0) of p̄ acts ( p̄ = (mc, 0) and G(0) = SU(2) for massive particles,
while p̄ = (E, E, 0, 0)/c and G(0) is effectively SO(2) for massless particles). A
generic state |p, r〉 is then constructed by acting on | p̄, r〉 by means of U (#p), see
(9.111), that is the representative on the quantum states of the simple Lorentz boost
#p connecting p̄ to p: p = #p p̄. This suffices to define the representative U (#)

of a generic Lorentz transformation, see (9.112). In this section we have applied
this prescription to the construction of both the positive and negative energy eigen-
states of the momentum operators. The role of |p, r〉 is now played by the spinors
u(p, r), v(p, r), and that of U (#) by the matrix S(#), as it follows by comparing
(10.149) with (9.112). It is instructive at this point to show that the expressions for
u(p, r), v(p, r) given in (10.154) or, equivalently, (10.157), for massive fermions,
could have been obtained from the corresponding spinors u(0, r), v(0, r) in S0 using
the prescription (9.111), namely by acting on them through the Lorentz boost S(#p):

u(p, r) = S(#p)u(0, r); v(p, r) = S(#p)v(0, r). (10.163)

This is readily proven using the matrix form (10.118) of S(#p) derived in Sect. 10.4.4
and the definition of u(0, r), v(0, r) in (10.152). The matrix product on the right hand
side of (10.163) should then be compared with the matrix form of u(p, r), v(p, r)

in (10.157).
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10.6.1 Useful Properties of the u( p, r) and v( p, r) Spinors

In the following we shall prove some properties of the spinors u(p, r) and v(p, r)

describing solutions with definite four-momentum.
• Let us compute the Dirac conjugates of u(p, r) e v(p, r):

ū(p, r) = u†(p, r)γ 0 = u†(0, r)
/ p† + mc

√
2m(Ep + mc2)

γ 0

= u†(0, r)γ 0γ 0 / p† + mc
√

2m(Ep + mc2)
γ 0

= ū(0, r)
/ p + mc

√
2m(Ep + mc2)

. (10.164)

In an analogous way one finds:

v̄(p, r) = v̄(0, r)
−/ p + mc

√
2m(Ep + mc2)

. (10.165)

Recalling the property (10.156), from (10.164) and (10.165) we obtain the equations
of motion obeyed by the Dirac spinors ū(p, r) e v̄(p, r) :

ū(p, r)( / p − mc) = 0,

v̄(p, r)( / p + mc) = 0.
(10.166)

• Next we use the relations:

( / p + mc)2 = 2mc( / p + mc),

( / p − mc)2 = 2mc(−/ p + mc),
(10.167)

which follow from (10.142) and the mass-shell condition p2 = m2c2, to compute
ū(p, r)u(p, r ′):

ū(p, r)u(p, r ′) = 2mc
2m(Ep + mc2)

ū(0, r)( / p + mc)u(0, r ′)

= c
Ep + mc2 (ϕr , 0, 0)( / p + mc)




0
0
ϕr ′





= ϕr · ϕr ′ = δrr ′ , (10.168)
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With analogous computations one also finds:

v̄(p, r)v(p, r ′) = c
Ep + mc2 v̄(0, r)(−/ p + mc)v(0, r ′)

= c
Ep + mc2 (0, 0,−ϕr )(−/ p + mc)




0
0
ϕr ′





= −δrr ′ , (10.169)

and moreover

ū(p, r)v(p, r ′) ∝ ū(0, r)( / p + mc)(−/ p + mc)v(0, r ′)
= 0 = v̄(p, r)u(p, r ′). (10.170)

Summarizing, we have obtained the relations

ū(p, r)u(p, r ′) = δrr ′ ,= −v̄(p, r)v(p, r ′),
ū(p, r)v(p, r ′) = 0. (10.171)

• Next we show that:

u†(p, r)u(p, r ′) = Ep

mc2 δrr ′ ≥ 0, (10.172)

v†(p, r)v(p, r ′) = Ep

mc2 δrr ′ ≥ 0. (10.173)

Indeed, using the Dirac equation / pu = mcu, and ū/ p = mcū, we find

u†(p, r)u(p, r ′) = ū(p, r)γ 0u(p, r ′) = ū(p, r)
mγ 0 + mγ 0

2m
u(p, r ′)

= ū(p, r)
/ pγ 0 + γ 0/ p

2mc
u(p, r ′).

Using now the property

/ pγ 0 + γ 0/ p = { / p, γ 0} = pµ{γ µ, γ 0} = 2ηµ0 pµ = 2Ep

c
,

the last term, can be rewritten as follows:

Ep

mc2 ū(p, r)u(p, r ′) = Ep

mc2 δrr ′ .

so that (10.172) is retrieved. Equation (10.173) is obtained in an analogous way.
We conclude that u†(p, r)u(p, r ′) and v†(p, r)v(p, r ′) are not Lorentz invariant

quantities, since they transform as Ep, that is as the time component of a four-vector.
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This agrees with the previous result that Jµ = ψ̄γ µψ is a four-vector whose time
component is J 0 = ψ†ψ > 0.

We can also prove the following orthogonality condition:

u(p, r)†v(−p, s) = 0, (10.174)

where we have used the short-hand notation u(p, r) ≡ u((Ep/c, p), r), v(p, r) ≡
v((Ep/c, p), r). To prove the above equation we use the Dirac equation for v(−p, s):
/ p′v(−p, s) = −mcv(−p, s), where p′ ≡ (Ep/c,−p). We can then write:

u(p, r)†v(−p, s) = ū(p, r)γ 0v(−p, s) = 1
2mc

ū(p, r)( / pγ 0 − γ 0/ p′)v(−p, s)

= 1
2mc

ū(p, r)(piγ
iγ 0 + γ 0γ i pi )v(−p, s) = 0.

(10.175)

From property (10.174) it also follows that positive and negative energy states are
represented by mutually orthogonal spinors if they have the same momentum:

[
ψ (+)

p (x)
]†
ψ (−)

p (x) = 0. (10.176)

Recalling from (10.145) and (10.146) that

ψ (+)
p,r (x) = cpu(p, r)e−

i
! (Ept−p·x); ψ (−)

p,r (x) = cpv(−p, r)e
i
! (Ept+p·x),

from the orthogonality condition (10.174) it indeed follows that

ψ (+)
p,r (x)†ψ (−)

p,s (x) = |cp|2u†(p, r)v(−p, s)e
2i
! Ept = 0. (10.177)

Having fixed the normalization factor cp in (10.139) to be
√

mc2

V Ep
, we now observe

that (10.172) and (10.173) represent the right normalization (9.116) of the u and v

vectors in order for the corresponding positive and negative energy solutionsψ (±)
p,r (x)

to be normalized as in (9.54):

(
ψ (±)

p,r ,ψ
(±)
p′,r ′

)
=

∫
d3xψ (±)

p,r (x)†ψ
(±)
p′,r ′(x) = (2π!)3

V
δ3(p− p′)δrr ′ ,

as the reader can easily verify. Similarly, using the orthogonality condition (10.174),
which applies to the above expression only when p′ = p, we can show that positive
and negative energy solutions are mutually orthogonal:

(
ψ (+)

p,r ,ψ
(−)
p′,r ′

)
=

∫
d3x|cp|2u(p, r)†v(−p′, r ′)e

i
! (Ep+E ′p)t e−

i
! (p−p′)·x

∝ (2π!)3δ3(p− p′)e
2i
! Ept u(p, r)†v(−p, r ′) = 0.
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• Finally we define projection operators,+(±p) on the positive and negative energy
solutions:

,+(p)αβ ≡
2∑

r=1

u(p, r)α ū(p, r)β , (10.178)

,−(p)αβ ≡ −
2∑

r=1

v(p, r)α v̄(p, r)β . (10.179)

Using the formulae (10.171) we see ,±(p) are indeed projection operators:

,+(p)u(p, r) = u(p, r); ,+(p)v(p, r) = 0, (10.180)

,−(p)u(p, r) = 0; ,−(p)v(p, r) = v(p, r). (10.181)

The explicit form of ,± is immediately derived from (10.167) since they express
the fact that / p ± mc are proportional to projection operators. Thus we have:

,+(p) = 1
2mc

( / p + mc), (10.182)

,−(p) = − 1
2mc

( / p − mc). (10.183)

10.6.2 Charge Conjugation

We show the existence of an operator in the Dirac relativistic theory which transforms
positive energy solutions into negative energy solutions, and viceversa. One can
prove on general grounds that that there exists a matrix in spinor space, called the
charge-conjugation matrix with the following properties

C−1γµC = −γ T
µ ; CT = −C; C† = C−1. (10.184)

In the standard representation we may identify the C matrix as

C = iγ 2γ 0 =
(

0 −iσ 2

−iσ 2 0

)
. (10.185)

Given a Dirac field ψ(x), we define its charge conjugate spinor ψc(x) as follows:

ψc(x) ≡ Cψ̄T (x). (10.186)

The operation which maps ψ(x) into its charge conjugate ψc(x) is called charge-
conjugation. Let us show that charge conjugation is a correspondence between pos-
itive and negative energy solutions.
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To this end let us consider the positive energy plane wave described by the spinor
u(p, r). Its Dirac conjugate ū will satisfy the following equation:

ū(p) ( / p − mc) = 0.

By transposition we have
(
γ T
µ pµ − mc

)
ūT (p) = 0

If we now multiply the above equation to the left by the C matrix and use the property
(10.184) we obtain

(/ p + mc) CuT (p) = 0, (10.187)

which shows that charge-conjugate spinor uc(p) = CuT (p) satisfies the second
of (10.148) and should therefore coincide with a spinor v(p) defining the negative
energy solution ψ (−)

−p with opposite momentum −p. Besides changing the value of
the momentum, charge-conjugation also reverses the spin orientation. Going, for
the sake of simplicity, to the rest frame, where a positive energy solution with spin
projection !/2 along a given direction, is described by

u(0, 1) = (1, 0, 0, 0)T ,

see (10.152), we find for the charge conjugate spinor uc ≡ Cγ 0u∗ (note that
γ 0T = γ 0)

uc(0, r) = Cγ 0u∗(0, r = 1) = (0, 0, 0, 1)T = v(0, r = 2),

that is a negative energy spinor with spin projection−!/2. In general the reader can
verify that

uc(0, r) = εrsv(0, s), (10.188)

where summation over s = 1, 2 is understood, and (εrs) is the matrix iσ2: ε11 =
ε22 = 0, ε12 = −ε21 = 1.

Let us now evaluate uc(p, r) using the explicit form of u(p, r) given in (10.154):

uc(p, r) = Cγ 0u(p, r)∗ = Cγ 0 / p∗ + mc
√

2m(mc2 + Ep)
u(0, r)∗

= C
/ pT + mc

√
2m(mc2 + Ep)

γ 0u(0, r)∗ = − / p + mc
√

2m(mc2 + Ep)
uc(0, r)

= εrs
− / p + mc

√
2m(mc2 + Ep)

v(0, s) = εrsv(p, s). (10.189)
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In the above derivation we have used the properties C / pTC−1 = − / p and γ 0 / p∗ =
/ pT γ 0.

We shall see in the next chapter that, upon quantizing the Dirac field, negative
energy solutionsψ (−)

−p,r with momentum−p and a certain spin component (up or down
relative to a given direction) are reinterpreted as creation operators of antiparticles
with positive energy, momentum p and opposite spin component. Thus the charge
conjugation operation can be viewed as the operation which interchanges particles
with antiparticles with the same momentum and spin. As far as the electric charge
is concerned we need to describe the coupling of a charge conjugate spinor to an
external electromagnetic field as it was done for the scalar field. This will be discussed
in Sect. 10.7. We anticipate that the electric charge of a charge conjugate spinor
describing an antiparticle is opposite to that of the corresponding particle.

10.6.3 Spin Projectors

In Sect. 10.6.1 we have labeled the spin states of the massive solutions to the Dirac
equation by the eigenvalues, in the rest frame, of 33: u(0, r), v(0, r), for r = 1, 2
correspond to the eigenvalues +!/2 and −!/2 of 33. This amounts to choosing the
two-component vectors ϕr to correspond to the eigenvalues +1 and −1 of σ3. We
could have chosen u(0, r), v(0, r) to be eigenvectors of the spin-component % · n
along a generic direction n in space, |n| = 1. The corresponding eigenvalues would
still be ±!/2. Clearly, for generic n,% · n is not conserved, namely it does not
commute with the Hamiltonian, as proven in Sect. 10.4.4. This is not the case if
n = p/|p|, in which case the corresponding component of the spin vector defines
the helicity & = % · p/|p| which is indeed conserved.

We now ask whether it is possible to give a covariant meaning to the value of
the spin orientation along a direction n. We wish in other words to define a Lorentz-
invariant operator On which reduces to % · n in the rest frame, namely such that, if
in S0:

(% · n)u(0, r) = εr
!
2

u(0, r); (% · n)v(0, r) = εr
!
2
v(0, r), (10.190)

where ε1 = 1, ε2 = −1, in a generic frame S:

Onu(p, r) = εr
!
2

u(p, r); Onv(p, r) = εr
!
2
v(p, r). (10.191)

Clearly, using (10.163), we must have:

On = S(#p)(% · n)S(#p)
−1 = %′ · n, (10.192)

where 3′i are the generators of the little group G(0)
p ≡ SU(2)p of p.
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We shall however compute On in a simpler way, using the Pauli-Lubanski four-
vector Ŵµ introduced in Sect. 9.4.2, which, on spinor solutions with definite momen-
tum pµ, acts by means of the following matrices:

Wµ ≡ −
1
2
εµνρσ3

νρ pσ , (10.193)

It is useful to write it in a simpler way by introducing the matrix γ 5 (see Appendix G):

γ 5 = iγ 0γ 1γ 2γ 3 = i
4!εµνρσ γ

µγ νγ ργ σ =
(

0 12
12 0

)
. (10.194)

Note that γ 5 anticommutes with all the γ µ-matrices and thus commutes with the
Lorentz generators 3µν which contain products of two γ µ-matrices. From this we
conclude that γ 5 commutes with a generic Lorentz transformation S(#), since it
commutes with its infinitesimal generator.

Using the γ 5 matrix the Pauli-Lubanski four-vector (10.193) takes the simpler
form:

Wµ = −1
2
εµνρσ

(
−!

2
σνρ

)
pσ = !

4
εµνρσ σ

νρ pσ

= i!
2
γ 5σµν pν = −iγ 53µν pν, (10.195)

where we have used the identity

γ 5σµσ = − i
2
εµσνρσ

νρ,

given in Appendix G, which can be verified by direct computation, starting from
the definition of γ 5. Using the Lorentz transformation properties (10.89) of the γ µ-
matrices, and the invariance of the εµνρσ -tensor under proper transformations, we
can easily verify that W µ transforms like the γ µ-matrices:

S(#)W µS(#)−1 = ,−1µ
νW ν . (10.196)

Let us now introduce the four-vector nµ(p) = (n0(p), n(p)) having the following
properties:

{
n2 = nµnµ = −1,

nµ pµ = 0.
(10.197)

In the rest frame, p = 0 and E = mc2 /= 0, the previous relations yield:

nµ pµ = n0 E = 0⇒ n0 = 0,

n2 = (n0)2 − |n|2 = −1⇒ |n| = 1,
(10.198)
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that is nµ(p = 0) = (0, n). We may now compute the scalar quantity nµWµ:

nµWµ = i!
2
γ 5σµνnµ pν − !

4
γ 5(γµγν − γνγµ)nµ pν

= −!
4
γ 5(2γµγν − 2ηµν)nµ pν = −!

2
γ 5γµnµ / p. (10.199)

where the property n · p = 0 has been used. In the rest frame p = 0, nµWµ becomes:

(n · W )(p = 0) = !
2
γ 5(niγ i )p0γ 0 = −!

2
mcγ 5γ 0γ i ni = −!

2
mcγ 5αi ni

= −mc% · n, (10.200)

where we have used the property

3i = !
2
γ 5αi , (10.201)

which can be verified using (10.194), (10.68) and (10.105). Thus we have found a
Lorentz scalar quantity that in the rest frame reduces to n · %:

On ≡ −
1

mc
nµWµ

p=0−→ O(0)
n = n · %. (10.202)

In the particular case of n pointing along the z-axis, n = nz = (0, 0, 0, 1), from
(10.105) we find

O(0)
nz

= − 1
mc

nµWµ

∣∣∣∣
p=0

=
( !

2 σ3 0
0 !

2 σ3

)
= 33. (10.203)

Clearly, using the transformation property (10.196) of W µ and the Lorentz invariance
of the expression of On , in a generic frame S we find

On = − 1
mc

nµWµ = S(#p)O(0)
n S(#p)

−1, (10.204)

that is if u(0, r), v(0, r) are eigenvectors on % · n, u(p, r), v(p, r) are eigenvectors
on On corresponding to the same eigenvalues, which is the content of (10.190) and
(10.191).

We can define projectors Pr on eigenstates of On corresponding to the eigenvalues
εr !/2 = ±!/2:

Pr ≡
1
2

(
1 + εr

2
!

On

)
= 1

2

(
1 + εr

1
mc
γ 5/n/ p

)
. (10.205)
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In the rest frame the above projector reads:

P(0)
r ≡

1
2

(
1 + εrγ

5niαi

)
=

(
12 + εr n · σ 0

0 12 + εr n · σ

)
. (10.206)

The matrices Pr project on both positive and negative energy solutions with the same
spin component along n. Let us now define two operators ,+,r ,,−,r projecting on
positive and negative solutions with a given spin component r , respectively:

,+,r u(p, s) = δrsu(p, s); ,+,rv(p, s) = 0,

,−,r u(p, s) = 0; ,−,rv(p, s) = δrsv(p, s).
(10.207)

They have the following general form:

(,+,r )
α
β = uα(p, r)ūβ(p, r); (,−,r )

α
β = −vα(p, r)v̄β(p, r), (10.208)

as it follows from the orthogonality properties (10.168) and (10.169). To find the
explicit expression of these matrices in terms of p and n, we notice that they are
obtained by multiplying to the right and to the left the projectors Pr on the spin state
r by the projectors ,± on the positive and negative energy states:

,±,r = ,±Pr,± = ,±
1
2
(1 ± εrγ

5 /n) = ± 1
4mc

( / p ± mc)(1 ± εrγ
5/n),

where we have used the property:
(

1 + εr
1

mc
γ 5 / n/ p

)
( / p ± mc) = ( / p ± mc)(1 ± εrγ

5/n), (10.209)

which can be easily verified using the fact that / p and /n anticommute: /n/ p = − / p/n.

10.7 Dirac Equation in an External Electromagnetic Field

We shall now study the coupling of the Dirac field to the electromagnetic field Aµ.

To this end, as we did for the complex scalar field in Sect. 10.2.1, we apply the
minimal coupling prescription, namely we substitute in the free Dirac equation

pµ→ pµ + e
c

Aµ, (10.210)

that is, in terms of the quantum operator

i!∂µ→ i!∂µ + e
c

Aµ. (10.211)

In the convention which we adopt throughout the book, the electron has charge
e = −|e| < 0. The coupled Dirac equation takes the following form:
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[
(i!∂µ + e

c
Aµ)γ µ − mc

]
ψ(x) = 0. (10.212)

Using the covariant derivative introduced in (10.36), (10.212) takes the form
[
i!γ µDµ − mc

]
ψ(x) = 0, (10.213)

Just as in the case of the complex scalar field, the resulting equation is not invariant
under gauge transformations

Aµ(x)→ Aµ(x) + ∂µϕ(x), (10.214)

unless we also apply to the Dirac wave function the following simultaneous phase
transformation

ψ(x)→ ψ(x)e
ie
!c ϕ(x). (10.215)

In connection with the discussion of the meaning of the charge-conjugation oper-
ation, it is instructive to see how the Dirac equation in the presence of an external
electromagnetic field transforms under charge-conjugation. The equation for the
charge-conjugate spinor ψc = Cψ

T = Cγ 0ψ∗ is easily derived from (10.212)
and reads:

((
i!∂µ −

e
c

Aµ

)
γ µ − mc

)
ψc(x) = 0. (10.216)

We see that ψ and ψc describe particles with opposite charge. This justifies the
statement given at the end of Sect. 10.6.2 that antiparticles have opposite charge with
respect to the corresponding particles.9 Let us now recast (10.212) in a Hamiltonian
form. Solving with respect to the time derivative, we have:

i!∂ψ
∂t

=
[
−c

(
i!∂i + e

c
Ai

)
αi + βmc2 − eA0

]
ψ = Hψ, (10.218)

where H = H f ree + Hint , H f ree being given by (10.53) and Hint = −e(A0 + Aiα
i ).

In order to study the physical implications of the minimal coupling it is convenient
to study its non-relativistic limit. We proceed as in Sect. 10.4.1. We first redefine
the Dirac field as in (10.73), so that the Dirac equation (10.218) takes the following
form:

(
i! ∂
∂t

+ mc2
)
ψ ′ =

[
−c

(
i!∂i + e

c
Ai

)
αi + βmc2 − eA0

]
ψ ′.

9 We also observe that the Dirac equation is invariant under the transformations

ψ → ψc, Aµ →−Aµ. (10.217)
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Next we decompose the field ψ ′ as in (10.71) (omitting prime symbols on ϕ and χ )
and find:

(
i!
∂

∂t
+ eA0

)
ϕ = cσ ·

(
p̂− e

c
A

)
χ , (10.219)

(
i!
∂

∂t
+ eA0 + 2mc2

)
χ = cσ ·

(
p̂− e

c
A

)
ϕ. (10.220)

As explained earlier, in the non-relativistic limit, we only keep on the left hand side
of the second equation the term 2mc2χ , since the rest energy mc2 of the particle is
much larger than the kinetic and potential energies, so that

χ = 1
2mc

σ ·
(

p̂− e
c

A
)
ϕ,

so that only the large upper component ϕ remains. Substituting the expression for χ
into the first of (10.219) we obtain:

(
i!
∂

∂t
+ eA0

)
ϕ = 1

2m

[
σ ·

(
p̂− e

c
A

)]2
ϕ. (10.221)

To evaluate the right hand side we note that given two vectors a, b the following
identity holds as a consequence of the Pauli matrix algebra:

(a · σ )(b · σ ) = a · b + iσ · (a × b).

In our case

a = b =
(

p̂− e
c

A
)

,

but the wedge product does not vanish, since ∇ and A do not commute. We find:

(
p̂− e

c
A

)
×

(
p̂− e

c
A

)
ϕ = i

e!
c

(−A×∇ + ∇ × A)ϕ + i
e!
c

A×∇ϕ

= i
e!
c

Bϕ. (10.222)

Substituting in (10.221) we finally obtain:

i!∂ϕ
∂t

=
[

1
2m

|i!∇ + e
c

A|2 + eV − e
mc

s · B
]
ϕ ≡ Hϕ, (10.223)

where we have defined, as usual, s ≡ !σ/2, and written A0 as −V, V being the
electric potential. Equation (10.224) is called the Pauli equation. It differs from the
Schroedinger equation of an electron interacting with the electromagnetic field by
the presence in the Hamiltonian of the interaction term:
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Hmagn = − e
mc

s · B = −µs · B, (10.224)

which has the form of the potential energy of a magnetic dipole in an external
magnetic field with:

µs = e
mc

s = g
e

2mc
s, (10.225)

representing the electron intrinsic magnetic moment. The factor g = 2 is called the
g-factor and the gyromagnetic ratio associated with the spin, defined as |µs |/|s|, is
g|e|/(2mc). Recall that the magnetic moment associated with the orbital motion of
a charge e reads

µorbit = e
2mc

M, (10.226)

M being the orbital angular momentum. The gyromagnetic ratio |µs |/|s| = |e|/(mc)
is twice the one associated with the orbital angular momentum. This result was found
by Dirac in 1928.10

Finally we note that in the present non-relativistic approximation, taking into
account that the small componentsχ can be neglected, the probability densityψ†ψ =
ϕ†ϕ + χ†χ reduces to ϕ†ϕ as it must be the case for the Schroedinger equation.

Let us write the Lagrangian density for a fermion with charge e, coupled to the
electromagnetic field:

L = ψ̄(x)
(

i!c/ D − mc2
)
ψ(x). (10.227)

The reader can easily verify that the above Lagrangian yields (10.212), or, equiva-
lently (10.213). Just as we did for the scalar field, we can write L as the sum of a part
describing the free fermion, plus an interaction term LI , describing the coupling to
the electromagnetic field:

L = L0 + LI ,

L0 = ψ̄(x)
(

i!c / ∂ − mc2
)
ψ(x),

LI = Aµ(x)Jµ(x) = eAµ(x)ψ̄(x)γ µψ(x),

(10.228)

where we have defined the electric current four vector Jµ as:

Jµ(x) ≡ ejµ(x) = eψ̄(x)γ µψ(x). (10.229)

In Sect. 10.4.2 we have shown that, by virtue of the Dirac equation, Jµ is a conserved
current, namely that it is divergenceless: ∂µ Jµ = 0.

10 We recall that the Zeeman effect can only be explained if g = 2. We see that this value is correctly
predicted by the Dirac relativistic equation in the non-relativistic limit.
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10.8 Parity Transformation and Bilinear Forms

It is important to observe that the standard representation of the γ -matrices given
in (10.4.1) is by no means unique. Any other representation preserving the basic
anticommutation rules works exactly the same way. It is only a matter of convenience
to use one or the another. In particular the expression (10.97) of the Lorentz generators
3µν in terms of γ µ-matrices is representation-independent.

In this section we introduce a different representation, called the Weyl represen-
tation, defined as follows:

γ 0 =
(

0 12
12 0

)
; γ i =

(
0 −σ i

σ i 0

)
; i = 1, 2, 3. (10.230)

It is immediate to verify that the basic anticommutation rules (10.61) are satisfied.
Defining

σµ = (12,−σ i ); σ̄µ = (12, σ
i ), (10.231)

equation (10.230) can be given the compact form

γ µ =
(

0 σµ

σ̄µ 0

)
. (10.232)

The standard (Pauli) and the Weyl representations are related by a unitary change of
basis:

γ
µ
Pauli = U †γ

µ
W eylU.

Decomposing as usual the spinor ψ into two-dimensional spinors ξ e ζ:

ψ =
(
ξ

ζ

)
, (10.233)

one can show that, in the Weyl representation, the proper Lorentz transformations
act separately on the two spinors, without mixing them. As we are going to show
below, this means that the four-dimensional spinor representation, irreducible with
respect to the full Lorentz group O(1, 3) becomes reducible into two two-dimensional
representations under the subgroup of the proper Lorentz group SO(1, 3).

To show this we observe that since infinitesimal transformations in the spinor
representation of the Lorentz group are, by definition, connected with continuity to
the identity, they ought to have unit determinant, and therefore they can only belong
to the subgroup of proper Lorentz transformations SO(1, 3).

We can compute, in the Weyl basis, the matrix form of the 3µν generators:

3µν = −!
2
σµν = − i!

4

[
γ µ, γ ν

]
(10.234)
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= − i!
4

(
σµσ̄ ν − σνσ̄µ 0

0 σ̄µσν − σ̄ νσµ

)
(10.235)

and restricting µν to space indices we have

3i = −1
2
εi jk3

jk = !
2

(
σi 0
0 σi

)
. (10.236)

The generators 3i of rotations S(#R) have the same form as in the Pauli repre-
sentation. the corresponding finite transformation will therefore be implemented on
spinors by the same matrix S(#R) in (10.108).

Moreover from (10.100) the spinor representation of the infinitesimal boost gen-
erators J 0i , are also given in terms of a block diagonal matrix

30i = −i!Ki = −i!
αi

2
= − i!

2

(
σi 0
0 −σi

)
. (10.237)

It follows that if we use the decomposition (10.233) a proper Lorentz transformation
can never mix the upper and lower components of the Dirac spinor ψ. The explicit
finite form of the proper Lorentz transformations in the spinor representation can
be found by exponentiation of the generators, following the method explained in
Chap. 7.

A generic proper Lorentz transformation can be written as the product of a rotation
and a boost transformation, as in (10.112). The rotation part was given in (10.108),
while the boost part S(#B) was given in (10.116) in terms of the matrices αi , whose
matrix representation now, in the Weyl basis, is different. One finds that under #R,B
the two two-spinors ξ, ζ transform as follows:

ξ
#R−→

[
cos

θ

2
+ iσ · θ̂ sin

θ

2

]
ξ ; ζ

#R−→
[

cos
θ

2
+ iσ · θ̂ sin

θ

2

]
ζ,

ξ
#B−→

[
cosh

λ

2
+ σ · λ̂ sinh

λ

2

]
ξ ; ζ

#B−→
[

cosh
λ

2
− σ · λ̂ sinh

λ

2

]
ζ,

where θ ≡ |θ |; λ ≡ |λ|; λ̂ = λ
|λ| ; θ = θ

|θ | .
The above results refer to proper Lorentz transformations, that is they exclude

transformations with negative determinant: det # = −1. Let us now consider Lorentz
transformations with det # = −1. Keeping,0

0 > 0, the typical transformation with
det # = −1 is the parity transformation #P ∈ O(1, 3) defined by the following
improper Lorentz matrix:

(,P )µν =





1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



 . (10.238)
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On the space-time coordinates xµ it acts as follows :

x0 → x0; x→−x, (10.239)

that is it corresponds to a change of the orientation of the three coordinate axes.
We now show that #P acts on spinors as follows:

S(#P ) = ηPγ
0, (10.240)

where ηP = ±1.

We may indeed verify that

S(#P )−1γ µS(#P ) = ,P
µ
ν γ

ν .

which generalizes the general formula (10.89) to the parity transformation. The
above property is readily proven, using (10.240):

S(#P )−1γ 0S(#P ) = γ 0 = #P
0

0γ
0,

S(#P )−1γ i S(#P ) =− γ i = #P
i
jγ

j . (10.241)

The action of a parity transformation on a Dirac field ψ(x) is therefore:

ψ(x)
P−→ ηPγ

0ψ(x0,−x). (10.242)

If we take into account that in the Weyl representation the γ -matrices are given by
(10.230) and are off-diagonal, we see that the parity transformation #P transforms
ξ and ζ into one another:

{
ξ → ηPχ ,

χ → ηPξ .
(10.243)

This result shows that while for proper Lorentz transformations the representation of
the Lorentz group is reducible since it acts separately on the two spinor components,
if we consider the full the Lorentz group, including also improper transformations
like parity, the representation becomes irreducible and we are bound to use four-
dimensional spinors.

Let us now write the Dirac equation in this new basis. On momentum eigenstates
w(p)e−

i
! p·x it reads:

( / p − mc)w(p) = 0⇒
{

(p0 − p · σ )ξ = mcζ,
(p0 + p · σ )ζ = mcξ,

(10.244)

where we have written w = (ξ, ζ ). For massless spinors m = 0 the above equations
decouple:

(p0 − p · σ )ξ = 0; (p0 + p · σ )ζ = 0, (10.245)
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which will have solutions for p0 > 0 and p0 < 0. The above equations fix the
helicity & of the solution which, as we know, is a conserved quantity and labels the
internal degrees of freedom of a massless particle.11 On the two two-spinors ξ, ζ ,
the helicity is indeed & = !p · σ/(2|p|) = !p · σ/(2p0): It is positive for negative
energy solutions ζ and positive energy solutions ξ , while it is negative for positive
energy solutions ζ and negative energy solutions ξ .

In nature there are three spin 1/2 particles, called neutrinos and denoted by
νe, νµ, ντ , which, until recently, were believed to be massless.

In next chapter we shall be dealing with the other improper Lorentz transformation
besides parity, which is time-reversal.

10.8.1 Bilinear Forms

Let us now consider the matrix γ 5, introduced in (10.194). Its explicit form in the
Weyl representation is

γ 5 = iγ 0γ 1γ 2γ 3 = i
4!εµνρσ γ

µγ νγ ργ σ =
(

12 0
0 −12

)
. (10.246)

Let us investigate the transformation properties of γ 5 under a general Lorentz
transformation:

S−1(#)−1γ 5S(#) = i
4!εµνρσ S−1γ µSS−1γ νSS−1γ ρSS−1γ σ S

= i
4!εµνρσ,

µ
µ′,

ν
ν′,

ρ
ρ′,

σ
σ ′γ

µ′γ ν
′
γ ρ
′
γ σ
′

= det(#)
i
4
εµνρσ γ

µγ νγ ργ σ

= det(#)γ 5. (10.247)

In particular under a parity transformation, being det #P = −1 we have:

S(#P )−1γ 5S(#P ) = −γ 5, (10.248)

that is, it transforms as a pseudoscalar. By the same token we can show that:

S(#)−1γ 5γ µS(#) = det(#),µ
ν(γ

5γ ν). (10.249)

11 Recall that helicity is invariant under proper Lorentz transformations and labels irreducible
representations of SO(1, 3) with m = 0.
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so that γ 5γ µ transforms as an pseudo-vector, that is as an ordinary vector under
proper Lorentz transformations, and with an additional minus sign under parity.
Defining

γ µν ≡ 1
2
[γ µ, γ ν],

we verify that γ µν transforms an antisymmetric tensor of rank two:

S(#)−1γ µνS(#) = 1
2

[
S−1γ µS, S−1γ νS

]
= ,µ

ρ,
ν
σ γ

ρσ (10.250)

while γ5γ
µν transforms like a pseudo- (or axial-) tensor, that is with an additional

minus sign under parity as it follows from (10.248):

S(#)−1γ5γ
µνS(#) = det(#),µ

ρ,
ν
σ γ

5γ µν . (10.251)

These properties allow us to construct bilinear forms in the spinor fields ψ which
have definite transformation under the full Lorentz group.

Indeed if we consider a general bilinear form of the type:

ψ̄(x)γ µ1...µkψ(x) (10.252)

as shown in Appendix G the independent bilinears are:

ψ̄(x)ψ(x); ψ̄(x)γ µψ(x); ψ̄(x)γ µνψ(x); ψ̄(x)γ 5ψ(x); ψ̄(x)γ 5γ µψ(x).

(10.253)

To exhibit their transformation properties we perform the transformation

ψ ′(x ′) = Sψ(x)→ ψ
′
(x ′) = Sψ(x) = ψ†(x)S†γ 0 (10.254)

and use the relation (10.92) of Sect. 9.3.3, namely

γ 0S†γ 0 = S−1 (10.255)

Using (10.247) and (10.248) it is easy to show that ψ̄(x)ψ(x) is a scalar field while
ψ̄(x)γ 5ψ(x) is a pseudoscalar, i.e. under parity they transform as follows:

ψ̄(x)ψ(x)→ ψ̄ ′(x ′)ψ ′(x ′); ψ̄(x)γ 5ψ(x)→−ψ̄ ′(x ′)γ 5ψ ′(x ′). (10.256)

By the same token, and using (10.250) and (10.251) as well, we find analogous
transformation properties for the remaining fermion bilinears. The result is summa-
rized in the following table:
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Bilinear P-transformed Kind

ψ̄(x)ψ(x) ψ̄(xP )ψ(xP ) Scalar field
ψ̄(x)γ 5ψ(x) −ψ̄(xP )γ 5ψ(xP ) Pseudo-scalar field
ψ̄(x)γ µψ(x) ηµµψ̄(xP )γ µψ(xP ) Vector field
ψ̄(x)γ 5γ µψ(x) −ηµµψ̄(xP )γ 5γ µψ(xP ) Axial-vector field
ψ̄(x)γ µνψ(x) ηµµηννψ̄(xP )γ µνψ(xP ) (Antisymmetric) tensor field

where, in the second column, there is no summation over the µ and ν indices, and
xP ≡ (xµ

P ) = (ct,−x).
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