Esercizi di Fisica Teorica (Parte B): foglio n.6 – a.a. 2013-4

26. Lagrangiana classica per la forza di Lorentz

Si derivi l'equazione classica per la forza di Lorentz,

$$m\,\frac{d\vec{v}}{dt} = q\,\left(\vec{E} + \frac{\vec{v}}{c} \times \vec{B}\right)\,,$$

dalla Lagrangiana $[\vec{A} \equiv \vec{A}(\vec{x}, t), \, \varphi \equiv \varphi(\vec{x}, t)]$

$$L = \frac{1}{2} m \vec{v}^2 + q \frac{\vec{v}}{c} \cdot \vec{A} - q \varphi.$$

27. Trasformazioni di gauge

Si verifichi che la variazione della Lagrangiana di cui al punto precedente sotto una trasformazione di gauge $[\Lambda \equiv \Lambda(\vec{x}, t)]$,

$$\varphi' = \varphi - \frac{1}{c} \frac{\partial \Lambda}{\partial t}, \qquad \vec{A}' = \vec{A} + \vec{\nabla} \Lambda,$$

è una derivata totale rispetto al tempo e dunque non contribuisce alle equazioni del moto.

28. Equazione quantistica per la forza di Lorentz (I)

Considerata una particella quantistica carica priva di spin in un campo elettromagnetico assegnato, descritta dall'Hamiltoniano $[\vec{A} \equiv \vec{A}(\vec{x},t), \, \varphi \equiv \varphi(\vec{x},t)]$

$$H = \frac{1}{2m} \left(\vec{P} - \frac{q}{c} \vec{A} \right)^2 + q \, \varphi \,,$$

si mostri che in visuale di Heisenberg

$$m\,\frac{d\vec{X}}{dt} = \vec{P} - \frac{q}{c}\,\vec{A}\,.$$

29. Equazione quantistica per la forza di Lorentz (II)

Continuando il problema precedente, introdotto l'operatore

$$\vec{V} = \frac{1}{m} \left(\vec{P} - \frac{q}{c} \vec{A} \right) ,$$

si mostri che

$$m\,\frac{d\vec{V}}{dt} = q\,\vec{E} + \frac{q}{2mc}\,(\vec{P}\times\vec{B} - \vec{B}\times\vec{P}) - \frac{q^2}{mc^2}\,(\vec{A}\times\vec{B})\,.$$

30. Equazione quantistica per la forza di Lorentz (III)

Continuando il problema precedente, si mostri che se \vec{E} e \vec{B} sono uniformi nel volume del pacchetto d'onda che descrive la particella carica, allora, in accordo con il teorema di Ehrenfest:

$$m \frac{d\langle \vec{V} \rangle}{dt} = q \left(\vec{E} + \frac{\langle \vec{V} \rangle}{c} \times \vec{B} \right).$$