Section 8.3: The Connectiorn Fornmlas 325

8.3 THE CONNECTION FORMULAS

In the discussion so far 1 have assumed that the “walls™ of the potential well (or
the barrier) are rertical. so that the “cxterior™ solution is simple. and the boundary
conditions trivial. As it trns out. our main resulls (Equatons 8.16 and 8.22) are
reasonably accurate even when the edges are not so abrupt tindced. in Gamow's
theory they were applied to just such a case). Neventheless, it is of some interest
to study more closely what happens 1o the wave function at a turning point (E =
V). where the “classical™ region joins the “nonclassical” region. and the WKB
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FIGURE 8.7: Enlarged view of the right-hand turning point.

approximation itself breaks down. In this section I'll treat the bound state problem
(Figure 8.1): you get to do the scattering problem for yourself (Problem 8.10)."

For simplicity. let’s shift the axes over so that the nght-hand turning point
occurs at v = 0 (Figure 8.7). In the WKB approximation. we have
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{(Assuming V (v) remains greater than E for afl x > 0. we can exclude the positive
cxponent in this region. because it blows up as ¥ — »¢.) Our task 15 to join the
two solutions at the boundary. But there is a serious difficulty here: In the WKB
approximation, ¥ goces 1o infimiry at the turning point (where p(x) — 0} The true
wave funcnion. of course, has no such wild behavior—as anticipated. the WKB
method simply fails in the vicimity of a turning point. And yet. it is precisely the
boundary conditions at the turning points that determine the allowed energies. What
we need to do. then. is splice the two WKB solutions together. using a “patching”™
wave function that straddles the turning pont.

Since we only need the patching wave function (i} in the neighborhood of
the origin. we'll approximate the potential by a straight line:

Vix) = E+ V' (0. [8.32]

NWarming: The following arpument is guite technical. and vou may wish 1o skip it on a first
reading.
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and solve the Schrodinger for this linearized V:

B d*y, s,
i E+ViOwly, = Ev,.
2m dx? +lE+ L Vp
or ,
d-'jfp 1
— = Y.
da? v
where
i b
o= [—,V'(Ol] :
n._

The o’s can be absorbed into the independent variable by defining

I=oX.
so that .
d‘l,b,, -
d-2 SR
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[8.33]

[8.34]

[8.36]

This is Airy’s equation. and the solutions are called Airy functions.” Since the
Airy equation is a second-order diffcrential equation. there are two linearly inde-

pendent Airy functions. Ai(Z) and Bi(2).

TABLE 8.1: Some properties of the Airy ftuncnions.

-

. d-v
Differentid Equenion ~ =
Y
Solrtions: Lincar cambinations of Airy Functions, Ay and Biis.

Hl=

Imtegral Representation: A0 =

| 3
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-

H 1
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s 3
Asvinprotic Forms:
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IClussivally. a linear potential means o constant [oree. and hence a constant aceeleration—the
simplest nontrivial motion possible. and the sirrmine poim Tor elementary mechanies. 1t is ironic that
the same potential in grartem mechanics gives nse 10 unlamibar Iranscendemal funcions. and plays

only a peripheral role in the theory.
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FIGURE 8.8: Graph of the Airy functions.

They are related 1o Bessel functions of order 1/3: some of their properties are
listed in Table 8.1 and they are plotted in Figure 8.8. Evidently the patching wave
function is a linear combination of Ai(2) and Bi(:):

Yplyv) =aAilax) + bBilax). [8.37]

for appropriate constants a and b.

Now t,, is the (approximate) wave function in the neighborhood of the origin:
our job is to match it to the WKB solutions in the overlap regions on either side
(see Figure 8.9). These overlap zones are close enough to the turning point that the
linearized potential is reasonably accurate (so that v, is a good approximation (o
the true wave Junction). and yet far enough away from the wrning point that the
WKB approximanon is reliable.!” In the overlap regions Equation 8.32 holds. and
therefore (in the notation of Equation 8.34)

plx) = V2m(E — E — V'(0)x) = ho''*/—x. 8.38]

In particular, in overlap region 2.

v 1 a2
f Ipx)| dy' = he 3f Vldy = %ma_‘-,?"{
L 0 %

I9Thix is a delicate dauble constraint, and it is possible ko concoct potentials so pathological that
no such oserlap region exisis, Howeser, in practival applications this seldom occurs. See Problem B.8.
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FIGURE 8.9: Patchiong region and the two overlap zones.
and therefore the WKB wave function (Equation 8.31) can be written as
D 2 v2
Vi) = —— ¢ 1n) [8.39]

4
Hoe 3174

Meanwhile. using the large-= asympiotic forms!! of the Airv functions (from

Table 8.1). the patching wave function (Equation 8.37) in overlap region 2 becomes

Il z 12 b
(;_ 3 {axl

== o oty 2 piten’? 8 40
2ymlax)iA JroxnA L

'pr (x) =

Comparing the two solutions. we see that

and b=0 [8.41]

Now we go back and repeat the procedure for overlap region 1. Once again.
p(x) is given by Equation 8.38. but this ime v is aegative, so

] 9
f plydy’ = %h(—a 9 (8.42]
. k

and the WKB wave function (Equation 8.31) is

w(l)g B@f%'—ﬂlll:_l_ce—i:;‘—u’.lll ::I. [8.43]

i

REYR T glance 1l seems absurd 1o use a farge-> approximabion in his regron, which after all s
supposed 1o be reasonably close 1o the lrning point at 7 = 0 (5o that the linear approximation 1o the
potential is validl. But notice that the argument bere is ey, and if you study the mater carefully (sce
Problem 8.8) vou will tind that there ix tivpically) a region in which et is Jarge. but at the ~ame time
it 1» reasonable o approximate Vi) by a straiglu line
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Mecanwhile, using the asymptotic form of the Airy function for large negative :
(Table 8.1). the patching function (Equation 8.37. with b = () reads

b = a 2 V2 T
Vil = Jrl—an) AT [ {=oree] 4]
7

1 N B T o
= N [FITf-l[‘l-i( v —¢ l'!/-le F5(—au ]_ [844]
Va(—ax}' 2

Comparing the WKB and patching wave functions in overlap region 1. we find

L e and — T o L
%/ N{T 2 Vho
or. putting in Equation 8.41 for a:
B=—i"*D. and C=ie'"*D. [8.45]

These are the so-called connection formulas. joining the WKB solutions at either
side of the turning point. We're done with the patching wave function now —its
only purpose was to bridge the gap. Expressing everything in terms of the one
normalization constant D. and shifting the turning point hack from the origin to an
arbitrary point x1, the WKB wave [unction (Equation 8.31) becomes

L% e . B )
~.m plxdydy + . ilx < xa:
\/ (x) f 4]
Yix) = - [8.46]

‘p[——f Ip(\}ld\] if v > va.
In(r

Example 8.3 Potential well with one vertical wall. Imagine a potential well
that has one vertical side (at ¥ = 0) and one sloping side (Figure 8.10). In this
case Y(0) = 0, so Equation 846 says

R MY}y I niT. n - - -L PRCE

or

e ,
IJ pl)dy = (u - _1—) ah. | [8.47]
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FIGURE 8.10: Potential well with one vertical wall.
For instance. consider the “half-harmonic oscillator.”
l
—mew x-. ifx > 0.
Viy=4 2 [8 48]
0. otherwise.

In this case
plx) = JEm[E — (1/Dmorx] = mcu‘/_u'l2 —x.

where
1 [2E
3= —/—
wV m
is the wming point. So
T

12 A=
5 bid
f pixyrdy = mcuf ‘i_r; —2dy = “mewx; = .
n 1] = 4 - 2w

and the quantization condition (Equation 8.47) yields

1 37 1
En=(2n— ;)hw:(;. i —‘?—----)hw- [8.49]

=3 —

In this particular case the WKB approximation actually delivers the exacr allowed
energies (which are precisely the odd encrgies of the full harmonic oscillator—see

Problem 2.:42).
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Example 8.4 Potential well with no vertical walls. Equation 8.46 connects the
WKB wave functions at a turning point where the potential slopes upward
(Figure 8.11(a)): the same reasoning. applied to a dowinward -sloping turning point
(Figure 8.11(b)). vields (Problem 8.9)

D’ l f"‘l r ’ -
——exp|—= [plx)]dx ] . ifx < xy:
ViIp(o)] p[ I J,

2D’ [] f‘ ( ,!) i ' s H] o
Sn| — Y)dy = 1a 11X > X.
v pix) hJ, ¥ A I

In particular. if we're talking about a potential well (Figure B 11(c)). the wave
function in the “interior™ region (x| < v < xa) can be wntien eithier as

i = [8.50]

AT

2 2 (’)I'+ﬁ
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2D ]
P{rv) = ———=sinfa(yv). wherc f(x) = - f
Vplx) h J

{Equation 8.46). or as

~ _ED' . I : ' r I
Pixv) = sinf(x). where 6)(x) = e pix)dy — T
I 11

v px) i

(Equation 8.50). Evidently the arguments of the sine functions must be equal. mod-
ulo 7:1 62 = 6 + nxr. from which it follows that

|

’ ] plxydx = (n - ;) xh., withn=1.2.3. __. [8.51]
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FIGURE B.11: Upward-sloping and downward-sloping turning points.

hl -
12Net 27— an overall minus sign can be absorbed into the nermalizauon factors D and D'
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This quantization condition determines the allowed cnergies tor the “typical”
case of a potential well with two sloping sides. Notice that it differs from the
formulas for two vertical walls (Equation 8.16) or onc vertical wall ( Equation 8.47)
only in the number that is subtracted from n (0. 1/4, or 1/2). Since the WKB
approximation works best in the scmi-classical ( large 1) regime, the distinction is
more in appearance than in substance. In any event. the result is extraordinarily
powerlul, for it cnables us to calculate (approximate) allowed energies without ever
solving the Schréidinger equation. by simply cvaluating onc integral. The wave
function itself has dropped out of sight.

*xProblem 8.5 Consider the quantum mechanical analog 10 the classical problem of
a ball (mass #1) bouncing elastically on the floor.!?

(a) What is the potential energy. as a function of height x above the floor? (For
negative v. the potential is infimie —the ball can’t get there at all)

(b) Solve the Schrodinger equation for this potential, expressing your answer in
terms of the appropriate Airy function (mote that Bi(=) blows up for large :.
and must therefore be rejected). Don’t bother 1o normalize Yrix).

(€) Using g = 9.80 m/s> and m = 0.100 ke. find the first four allowed energies.
In joules. correct to three significant digits. Hinr: See Milton Abramowitz and
Irene A. Stegun. Handbook of Mathematical Functions. Dover. New York
(1970). page 478: the notation is defined on page 450.

(d) What is the ground swite energy. in eV. of an efectron in this gravilational
field? How high off the ground is this clectron. on the average? Him: Use
the virial theorem to determine (x).

*Problem 8.6 Analyzc the bouncing ball (Problem 8.5) using the WKB approxi-
mation.

(@) Find the allowed energies. £,,. in terms of m, 2. and h.

(b) Now put in the particular values given in Problem 8.5(¢). and compare the
WKB approximation to the first four energies with the “exact™ results.

(c) About how large would the guantum number n have 10 be o give the ball
an average height of. say. 1 meter above the ground?

3For morc on the quantum bouncing ball see ). Gea-Banacloche. Ams J. Phvs. 67. 776 11999) and
N. Wheeler. ~Classical/quantum dynamics m a unilorm gravilational field.™ unpublished Reed Collepe
kcport (20025, This may sound like an awlully artificial problem. but the expeniment has actually been
done. using neutrons (V. V. Nesvizhevsky of af.. Nawre 415, 297 (30020



